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ABSTRACT
High-rate structural health monitoring of active structures operating in high-rate dynamic environments empowers the execution
of preventative behavior in response to structural degradation or external stimuli. Examples of structures operating in high-rate
dynamic environments include hypersonic vehicles, space crafts, and ballistic packages. The effective selection of reactive
actions to be taken in real-time requires an up-to-date model of the structure’s state. Importantly, the short timescale of relevance
to these structures means that the model must be continuously updated with a time step of 1 millisecond or less. However,
traditional frequency-based methods for updating the finite element model online require solving the generalized eigenvalue
problem, which becomes more complex as the number of nodes or FEA model increases, thereby increasing computational time.
In this work, the local eigenvalue modification procedure is put forward to accelerate the extraction of natural frequencies from
finite element models updated online. The local eigenvalue modification procedure works by pre-computing the eigenvalue
solution to a reference state of the system, then computes the single (i.e., local) change in the modal domain from the reference
state to the current state online. The modal domain update in the local eigenvalue modification procedure bypasses the general
eigenvalue problem, which is the most expensive computational step. For the online implementation of the state estimation,
the Dynamic Reproduction of Projectiles in Ballistic Environments for Advanced Research testbed is used. The testbed allows
for the controlled movement of a pinned condition attached to an otherwise free cantilever beam. In previous studies, the
testbed has been used with the generalized eigenvalue solver in a frequency-based model assimilation approach to infer the
most likely position of the pinned condition (i.e., state of the structure). This work reports the effectivity of the local eigenvalue
modification procedure compared to the generalized eigenvalue solution of the system for inference accuracy while varying
the nodes dedicated to the analysis. The optimal efficiency of the system’s approach is explored for the testbed-based health
assessments. Timing results and effects of sensor noise on the system are discussed in detail.
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INTRODUCTION
Active control can provide critical intervention to reduce or negate damage to a structure in situ; However, it requires the
acquisition of the state of the structure as a prerequisite to the decision and implementation of an intervention [1]. In high-
rate systems, estimating the structure’s state through modal analysis allows sparse networks of sensors to be used to attain the
natural frequencies of the structure [2]. The natural frequencies of a structure can be helpful despite the non-unique description
of the structure given its shape and boundary conditions. Acquiring the natural frequencies of a structure and then proposing
an explanatory model of the system can ascertain the system’s state using sparse sensor networks [2, 3].

Candidate models are evaluated for their natural frequencies by solving the eigenvalue problem of the proposed models. State
acquisition by way of modal analysis and candidate model testing is broken into three major tasks [2]. The first task entails
system excitation followed by hardware acquisition and digitization. Second, frequency analysis is performed. Third, candidate
models are proposed and evaluated for their similarity to the observed frequency response. The most time-consuming procedure
is solving the eigenvalue problem for the frequencies of a candidate model. This step scales in O(n3) time by traditional mode-
extraction methods [4–7].

For high-rate state estimation, attaining estimations of the system’s state in less than one millisecond can enable responsive in-
terventions in active aerospace structures [1]. Modal analysis can be used in all structural geometries; however, the complexity
required for a minimally accurate solution can increase the required computations. The Dynamic Reproduction of Projectiles
in Ballistic Environments for Advanced Research (DROPBEAR) testbed is used to explore a functional implementation of a
high-rate dynamic system. The testbed allows for the controlled movement of a pinned condition attached to an otherwise free
cantilever beam. This system is useful as it can be modeled as a 1-D Finite Element formulation and can instate a repeatable
change to its boundary condition.

A myriad of known algorithms can attain the eigenvalue solution, each responding in a worst case of O(N3) where N is the
finite element mesh size, and a best case of O(N2) [6]. However, in the high-rate state estimation problem, there is only a
requirement to retrieve the eigenvalues of a proposed model. The Local Eigenvalue Modification Procedure (LEMP) avoids
incurring the operational complexity of a mode-extraction algorithm by obtaining the eigenvalues of a modified state through
modification of known eigenvalues and eigenvectors of the system [3, 8]. The central proposal of this work is to avoid solving
the eigenvalue problem online by approximating the eigenvalues from a reference state and a single added change to the state.
In a timing investigation of LEMP’s online update step vs. a general eigen solution method for the eigenvalue problem, the
implementation of LEMP provided an approximately 100× reduction in time. Furthermore, it showed operational complexity
to be directly proportional to the mesh size of the finite element model. In an implementation of the algorithm in hardware,
the speed of LEMP was shown to reliably provide good estimates of the state while achieving the 1 millisecond time target,
which was out of reach for the mode-extraction algorithms. The merit of this work is in exploring and quantifying the result of
a direct algorithmic comparison between LEMP and traditional mode-extraction methods and showing the full state estimation
implementation loop in hardware and the resulting time per estimate.

Figure 1: Dynamic Reproduction of Projectiles in Ballistic Environments for Advanced Research (DROPBEAR) testbed.

BACKGROUND
For the online implementation of the state estimation, the Dynamic Reproduction of Projectiles in Ballistic Environments for
Advanced Research (DROPBEAR) testbed is used. The testbed allows for the controlled movement of a pinned condition
attached to an otherwise free cantilever beam and is shown in Figure 1 and specifications for the system are provided in Table 1.
The sensors utilized in the Hardware in the Loop (HIL) implementations were the Honeywell position sensor (model SPS-



L075-HALS) and a PCB Piezotronics accelerometer (model 393B05) at the end of the beam. Data from the trial recordings
on the beam were played back for all HIL tests in this study to eliminate as much potential noise from the physical process
allowing a fair comparison between algorithms. Computations were carried out using an eight-core Intel® Xeon® E5-2618L v3
processor mounted in a PXIe-8880 manufactured by National Instruments processing acceleration data digitized using a 14-bit
ADC module (PXI-6133) mounted in a common PXI chassis (PXIe-1082).

Table 1: Specifications for the configuration of the DROPBEAR testbed used in this work.

beam properties actuator properties

beam length 501 mm roller travel 84 mm
beam width 51 mm roller max velocity 3.32 m/s
beam thickness 6.66 mm roller start position 57.73 mm
beam Young’s modulus 209.5 GPa
beam density 7900 kg

m3

For this work, a previously developed 1-D FEA model describes the beam, and localized sub-sampling was implemented [3].
Subsampling allows a reduction in the number of scenarios tested at each estimation. Instead of testing every location along the
beam each time step as a likely position, sampling a normal distribution around the last known position is used. The selected
samples in the distribution are referred to as particles in this work. Subsampling within the scenario space is a necessary tradeoff
for speed in high-rate state estimation. For a 1-D model of the beam with a mesh size of N, convergence to the most likely
position pinned location to exactly one step would take solving for the frequencies of that beam in N models. Subsampling at
least the current position, a minimally forward position, and a minimally backward position guarantee convergence in at most N
steps testing three models per step. If, however, the pinned condition is local to its last known location, as is a safe assumption
in tracking problems, then on average, the convergence will only take the difference of minimal steps between them. Allowing
for a large reduction in calculations to achieve convergence quicker than the overhead of testing each of N points each step
would allow.

Figure 2: Data flow for the online LEMP algorithm used in this work.



Modal Analysis requires solving the eigenvalue problem; however, in the general case, a matrix inversion is required where the
operational complexity of solving the inversion grows proportionally as a square of the size of the matrices. For example, an
Euler-Bernoulli beam formulation is (2N)2 where N is the number of nodes in the beam. LEMP avoids solving the eigenvalue
problem and instead updates the solution as a change to the modal space representation [8]. The algorithmic implementation
of LEMP for the online configuration used in this work is shown in Figure 2. As a result, solving for the frequencies of each
model becomes a linear time problem in the state estimation. Therefore, a 1-Dimensional system only requires three solutions
to the eigenvalue problem, and a P-Dimensional tracking requires only 2P orthogonal models as a minimum subsample. In
terms of big O notation, LEMP allows a time complexity of O(PN) P being the dimensionality and the N the size of the mesh
of describing the structure while solving the eigenvalue problem incurs a time complexity of O(PN3). The authors have also
previously demonstrated the viability of the LEMP algorithm [3] and a corresponding real-time solver [9].

ANALYSIS
Two timing studies were implemented. First, a timing study on an algorithm in each simulation step is carried out. LEMP was
used to update a base cantilever beam model to a beam with a pinned condition, in comparison to the general eigen solution;
both solving the same system. This was done for mesh sizes 20 through 200 at each multiple of 10; 1000 times per unique
combination of parameters. The second study was on the full online implementation using the HIL setup. The parameters
varied over this study were the mesh size, the number of particles solved for, and the FFT window size. Increasing the window
size allows more frequency resolution at the cost of less time resolution and more computational time. Increasing the mesh
size allows for more positional resolution resulting in increased computational time. Similarly, sampling more particles allows
quicker convergence to a given position at the cost of computational time.

The first timing study shows that LEMP managed to be consistently solved in less time than the general eigen solution algorithm;
as shown in Figure 3. Note that the y-axis is in log10. The diagrams from the timing study show the variations in timing that are
an artifact of implementing the proposed method on a non-real-time operating system. This variation comes from the Windows
operating system having to que operations alongside running of the LEMP and a LabVIEW native generalised eigenvalue
solver. In Table 2 it is shown in detail that for this first algorithmic study that a 100× reduction in execution time was found a
the 40 node mesh size on average over 1000 trials. Notably, This gap in performance grows with mesh size.

Table 2: Selected timing values extracted from Figure 3.

nodes
40 80 120 160 200

LEMP (µs) 38.90 36.51 36.16 39.26 45.39
GES (µs) 3,804 21,974 73,593 179,314 344,519

In the second timing study, the HIL implementation is investigated. Figure 4 shows the mean completion times for the LEMP
algorithm over relevant parameters, namely the model size and the number of candidate models tested. In addition, it is observed

Figure 3: Time execution vs mesh size versus nodes for Local Eigenvalue Modification Procedure (LEMP) and General
Eigenvalue Solver (GES).



that there are large time savings to be had using the LEMP model updating method. With the hardware in the loop, it was found
that the implementation using LEMP required considerably more time than the pure algorithmic study pointing to there being
room for optimization in the implementation to reach the same performance.

Figure 4: Time for FEA execution versus nodes for a) GES and b) LEMP each using a FFT window of 5000 points (0.02 s) .

Figure 5: Time execution for Local Eigenvalue Modification Procedure (LEMP) vs a General Eigenvalue Solver (GES).

Figure 5 shows the time allocation of each step of the processes for a configuration with a mesh size of 40, testing 5 models,
and a FFT window of length 5000 data points (0.02 s) The time saving provided by LEMP is seen in the time required to solve
the FEA analysis. It is seen that with LEMP solving the FEA model for the considered problem requires a similar time to that
for the data acquisition and frequency analysis steps.

Results for the second timing study focused are on HIL implementation are reported in Figure 6 and Figure 7. Figure 6 reports
a typical time response obtained using theLEMP model updating method compared to the measured boundary condition change
instated by the pin. For these results, an FEA model with 80 nodes and an FFT window size of 15000 (0.06 s) was utilized.



Figure 6: HIL position tracking implementation using LEMP with a mesh size of 120 nodes, testing 5 candidate models, and
using a FFT window size of 5000 points (0.02 s).

Figure 7: Performance metrics for HIL implementation shown in a) TRAC and b) the SNR of LEMP as a function of mesh
size and FFT window length.

Figure 7 reports performance metrics for the HIL implementation of LEMP as a function of mesh size and FFT window
length. The Time Response Assurance Criterion (TRAC) is used to gauge the similarity between time traces by comparing the
numerical error and time delay of each estimation on a scale from 0 to 1 [10]. To expand, TRAC shows how well the signals
replicate each other, disregarding the amplitude of each signal. As TRAC is sensitive to changes in phase, it shows the penalty
for extending the FFT window size; indicating a phase lag incurred in the state estimation. Due to LEMP’s high-speed, latency
from the mesh size was shown to have a limited impact on the TRAC score in comparison. The Signal to Noise Ratio (SNR)
performance metric shows a tradeoff between mesh size and the FFT window length. While, obtaining the optimal mesh size
was found to be an important parameter to consider, the relative improvement from 24 to 31 dB shows that the LEMP solver is
still useful even at less-than-optimal parameter selections.

CONCLUSION
In this work, the local eigenvalue modification procedure (LEMP) is demonstrated to accelerate the extraction of natural fre-
quencies from finite element models updated online with real-time constraints on real-time hardware. LEMP’s linear time cost
makes it ideal for further extensions and studies into high-rate state estimations. For the online implementation of the state



estimation, the Dynamic Reproduction of Projectiles in Ballistic Environments for Advanced Research (DROPBEAR) testbed
is used. Timing reports for LEMP in comparison to the generalized eigenvalue method were reported showing speed-ups of
10× in the HIL implementation. This is shown to not necessarily be a ceiling for the approach as in the algorithmic study the
for meshes of the same size a 100× speed up was shown. Performance metrics for the HIL implementation of LEMP were
also discussed in detail. In future work, the algorithm will be extended to a working prototype of a 2D implementation of this
system.
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