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Physics-Based Approaches vs. Data-Driven Strategies

Physics-based strategies most popular
approaches used to characterize complex
phenomena focusing on the use of
mathematical models to describe the
physical laws and principles governing the
behavior of a dynamic system.

* interpretable and generalizable to
systems with similar characteristics
* flexibility to incorporate prior
knowledge and constraints into the
model

» often have large and time-varying
modeling errors
* heavy computational burden
e complexdynamics

Data-driven strategies has seen
remarkable advancements due to the
abundance of data and computing
resources. These methods utilize data to
learn the system dynamics and control
without the need for an explicit model.

* can limitedly represent only the
datasets they were trained to learn,
without any flexibility or inference
capability towards unseen conditions
* low level of interpretability and
explainability.



Going Hybrid

Whatif the physics become to What if we don’t have enough meaningful
complicated? data?

Measured Quantities

time history



When and How?



Strategies

Variety of strategies classified
according to three major
characteristics: 'y

Physics-Encoded

1. the amount and quality of data Bﬁtz;l"::"
that is utilized to describe a Physics Delta-Learning Physics-Corrector
given model
" Physics-Constrained
5 Physics-Guided
2. the strategy chosen to g
incorporate the physics into the fu
problem g
Not Enough i
Information Transfer Learning
3. the level of physical knowledge Data Augmentation
and understanding
representing the phenomena _ >
of interest Unknown Physics Knowledge Accurate
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Karniadakis, G.E., Kevrekidis, |.G., Lu, L. et al. Physics-informed machine learning. Nat Rev Phys 3, 422-440 (2021).



1. Physics-Constrained

Physics-Constrained

| This approach is centered around the of physical laws on
. . .
— models (physically consistent
2} ~_ (phy y )
4_@ S g Physics-constrained neural networks are the most popular implementation

Physics-Informed Loss ‘J O Of thls St rategy

GitHub

https://github.com/ARTS-Laboratory/Physics-Informed-Machine-Learning-Example/tree/demonstration



2. Physics Guided

Physics-Guided . n . . . .
ysiesHulde Domain-specific physical knowledge into the machine learning process, but

rather than enforcing strict constraints, it uses this knowledge as a

é Learning algorithms are employed to capture the discrepancy between an
— explicitly defined model based on prior knowledge and the true system from
@} - p— which data is attained. The goal s to fine-tune the overall model’s parameters
(i.e. the prior and model) in a way that the physical prior knowledge steers the

training process toward the desired direction.

* |ncorporating Prior Knowledge: Prior knowledge on the physics of the system is integrated into the
network architecture, or as part of the model

 Capturing Discrepancy: Deep learning models excel in learning from data,even when this contradicts
prior knowledge.

Haywood-Alexander, Marcus, Wei Liu, Kiran Bacsa, Zhilu Lai, and Eleni Chatzi. "Discussing the Spectra of Physics-Enhanced Machine Learning via a Survey on Structural Mechanics
Applications." arXiv preprint arXiv:2310.20425 (2023).



2. Physics Guided
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Physics-guided Deep Markov Model "7 Predicted
(PeDMM) for inferring the characteristics
and latent structure of nonlinear
dynamical systems from measurement

data.

Physical Prior

20 Range

Introduce a physical prior model into 0 20 40 60 80 100
the DMM to guide the training process: Time, ¢ (s)
simplified linear model that excludes

the cubic term Figure 5. Predictions vs exact solutions of displacement (top) and velocity (bottom) using the PeDMM

applied to the working example. Displacement is assume to be the only measurement. The gray dash-
dot line is the physical prior model and the blue bounding boxes represent the estimated 20 range.

Haywood-Alexander, Marcus, Wei Liu, Kiran Bacsa, Zhilu Lai, and Eleni Chatzi. "Discussing the Spectra of Physics-Enhanced Machine Learning via a Survey on Structural Mechanics
Applications." arXiv preprint arXiv:2310.20425 (2023).



3. Physics Encoded

Physics-Encoded

Simulated Data

ML a framework that embeds physical knowledge into the

architecture or design of machine learning models

l Via selection of operators, kernels, or transforms such as convolutional layers

and recurrent layers (physics-inspired layers or modules)

Constrained Gaussian Process uses prior knowledge to modify the kernel
function, the likelihood function, or the posterior distribution of the GP model.
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Posterior
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Cross, E.J. and Rogers, T.J.(2021). Physics-derived covariance functions for machine learning in structural dynamics. IFACPapersOnLine,54(7):168-173
(https://drg-greybox.github.io/publications/).




3. Physics Encoded
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Figure 10. Predicted vs exact solutions of displacement estimation using a GP applied to a subsample
of the working example, with (top) no physics embedded and (bottom) constrained GP. The blue bound-
ing boxes represent the estimated 20 range.

Haywood-Alexander, Marcus, Wei Liu, Kiran Bacsa, Zhilu Lai, and Eleni Chatzi. "Discussing the Spectra of Physics-Enhanced Machine Learning via a Survey on Structural Mechanics
Applications." arXiv preprint arXiv:2310.20425 (2023).




4. Delta - Learning Physics-Corrector

Delta - Learning Physics-

Corrector Represents the set of strategies where the between physics and
. data-driven ML model are used to the prediction
00.0.
—> .‘.

% * Use aphysics-based model to generate training data for an ML model
%% weiel  * The predictions of this physics-trained model will be used to inform a second ML
A Predictor . . .
model together with experimental data to learn the residuals
* Thefinal predictions are the sum of the initial predictions and residuals to
compensate for missing physics

DNN model
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Zhang X, Mahadevan S (2020) Bayesian neural networks for flight trajectory prediction and safety assessment. Decis Support Syst 131:113246



5. Delta - Learning Unknown Physics

Delta-Learning

Unknown Physics Represents the set of strategies where a data-driven ML model is used as
a to learn and
x>
L § The result is a cumulative damage model where the physics-informed layers are used to
@ | \> model the relatively well-understood physics (L10 fatigue life) and the data-driven layers

account for the hard to model components (i.e., grease degradation).
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(a) Cross-validation predictions vs. actual grease damage.

Yucesan YA, Viana FA (2020) A physics-informed neural network for wind turbine main bearing fatigue. IntJ Progn Health Manag.




6. Transfer Learning

Transfer Learning . . .
Strategies focused on using a model already trained on one problem to

Simulated Data

A help solve another problem that is but not the same
—»“0‘.
“‘ Physics
| Pre-Trained This strategy can save time and resources by using existing models
HH instead of training new ones and can also improve the performance of
| models when there is not enough data for the new problem.
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underlying physical mechanisms.
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6. Transfer Learning

Transfer Learning . . .
Strategies focused on using a model already trained on one problem to

Simulated Data

oe®e help solve another problem that is but not the same
@ —> “z .Physics
| Pre-Trained This strategy can save time and resources by using existing models
HH instead of training new ones and can also improve the performance of
. | models when there is not enough data for the new problem.

Physics-informed domain adaptation is a technique " .
that combines physics-based models with machine Ph}’SlCS-lI]f{:.lI'mEd domain
learning to improve the accuracy of predictions in new or adaptation (PIDA)
unseen environments. The goalis to adapt a model R Toma
trained on one domain to another domain with different f\ *n}ﬂ:- }{:{"’1;‘
characteristics, such as different physical properties or - T—‘-’:.tﬁﬁ' . fitted law *F“‘ql;;,b' S
environmental conditions. \m - »\8gs 27
Physical laws governing the domain shifts and use a source domain target domain
small amount of source-domain and target-domain data

to fit the physical law.



6. Physics-Informed Transfer Learning

Transfer learning can be used to leverage information
across related domains. The authors proposes utilizing
the Modal Assurance Criterion (MAC) between modes
of healthy structures as a measure of data similarity to
identify features that minimize conditional distribution

shift.
L . Figure 1. The experimental setup to perform modal testing on a metal (right) and composite (left)
Transfer feature criterion that incorporates MAC- blade simultaneously.
discrepancy into a feature selection criterion to
address the challenge of selecting features with high 5 > *
d . . .l . 50 '] Source L Source
cross-domain similarity. e . Taow f i T
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Poole, Jack, Paul Gardner, Andrew J. Hughes, Richard S. (a) (b)

Mills, Thomas A. Dardeno, and Nikos Dervilis. “Physics-
Informed Transfer Learning in PBSHM: A Case Study on

Experimental Helicopter Blades.” STRUCTURAL HEALTH .
MONITORING (2023). respectively.

Figure 5. PCA visualisation of the TFC-selected frequencies, corresponding to the fourth and fifth
modes, for M—C (panel (a)) and C—M (panel (b)), representing 66% and 64% of the variance



6. Physics-Informed Transfer Learning

Graphical domain is presented as an / e / 1 \
objective way of assessing structural [ :—]| | In dist(X,. X;)
similarity, with distance metrics utilised for 0™ f =¥ e \
assessing data-space similarities. [ ol 1 g lU =AM v
Knowledge transfer is performed using a o - >. :
branch of transfer learning called domain
adaptation. | | |
0 ) | J | }
The authors demonstrates a methodology for 0 - —- |
transferring knowledge within a | T
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Irreducible . Maximum N
. . , Attributed COMIMON
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aircraft wing to an unlabelled Piper Tomahawk model ) subgraph G

aircraft wing dataset, resulting in 100%
classification accuracy

Fig. 5. Schematic overview of the population-based methodology.

Pre-processing,
;llul
transfer

learning

Gardner, P, L. A. Bull, J. Gosliga, J. Poole, N. Dervilis, and K. Worden. "A population-based SHM methodology for heterogeneous structures: Transferring

damage localisation knowledge between different aircraft wings." Mechanical Systems and Signal Processing 172 (2022): 108918.



7. Data Augmentation

Data Augmentation

Set of techniques to artificially increase the amount of data by

points from existing data.

Improve the performance and generalization of machine learning models,

especially when the original data is insufficient or noisy.

o0®
°3 oo
'Y 34
_——» OGO
....
0o000
11 Original | Pitch .
05 T ili:
0 | . 0.0 o8 .I L Bl ._./ B | = I' é
0.5 4 I.:].. L I!'f
“1 ] ] 1 T 1 T I II
0 0.5 1 1.5 0 0.5 1 1.5
14 Noise Stretch
0.5 y
0 0.0 -4
0.5
_1 ] T T T T
0 0.5 1 1.5 0 05 1 15 2

Time

When an accurate and robust knowledge of the first
principle is available, it is possible to leverage this
information and run first-principle simulations to
generate data at various states and operating
conditions of a physical system.



7. Data Augmentation
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Fig. 2. Sketch of the physical twin and the corresponding physics-based computational model.

The authors generated different damage
scenarios using first-principle simulations
to augment a training dataset for an ML
classifier used for damage detection
of a bar structure.

Ritto T, Rochinha F (2021) Digital twin, physics-based model,
and machine learning applied to damage detection in
structures. Mech Syst Signal Process 155:107614
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Fig. 8. Training data generated with the stochastic digital twin with excitation frequency of 3800 Hz. Responses at DOFs (a) #1 and #6, (b) #2 and #4, (c) #3

and #5, (d) #5 and #6.



Open Challenges



Open Questions and Challenges

Generalization
How well do the integrated models generalize?

Uncertainty Quantification
Incorporating physical laws and constraints into machine learning models can make the quantification of the
uncertainty for the integrated model a challenge

Scalability
Are the integrated models scalable to large datasets? Is it computationally more efficient?

Interpretability and explainability
Machine learning models are often considered as black boxes, making it difficult to interpret and explain their
predictions. Is their introduction helping?

Data quality
How integrated models perform in the case of changes in measurements data quality and unbalanced datasets
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