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Physics-Based Approaches vs. Data-Driven Strategies
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Physics-based strategies most popular 
approaches used to characterize complex 

phenomena focusing on the use of 
mathematical models to describe the 

physical laws and principles governing the 
behavior of a dynamic system. 

• interpretable and generalizable to 
systems with similar characteristics
• flexibility to incorporate prior 
knowledge and constraints into the 

model

• often have large and time-varying 
modeling errors 

• heavy computational burden
• complex dynamics

Data-driven strategies has seen 
remarkable advancements due to the 

abundance of data and computing 
resources. These methods utilize data to 
learn the system dynamics and control 
without the need for an explicit model. 

• flexible, adaptive, and scalable
• handle uncertainties and 

disturbances in the data 

• can limitedly represent only the 
datasets they were trained to learn,

without any flexibility or inference 
capability towards unseen conditions
• low level of interpretability and 

explainability.



Going Hybrid
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What if the physics become to 
complicated?

What if we don’t have enough meaningful 
data?
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When and How?



Strategies
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Variety of strategies classified 
according to three major 
characteristics:

1. the amount and quality of data 
that is utilized to describe a 
given model

2. the strategy chosen to 
incorporate the physics into the 
problem

3. the level of physical knowledge 
and understanding 
representing the phenomena 
of interest Unknown Physics Knowledge Accurate
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Literature first!
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Strategies



Strategies
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Karniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Physics-informed machine learning. Nat Rev Phys 3, 422–440 (2021).



1. Physics-Constrained

Physics-constrained neural networks are the most popular implementation 
of this strategy
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https://github.com/ARTS-Laboratory/Physics-Informed-Machine-Learning-Example/tree/demonstration

This approach is centered around the strict enforcement of physical laws on 
models (physically consistent)



2. Physics Guided

Learning algorithms are employed to capture the discrepancy between an 
explicitly defined model based on prior knowledge and the true system from 

which data is attained. The goal is to fine-tune the overall model’s parameters 
(i.e. the prior and model) in  a way that the physical prior knowledge steers the 

training process toward the desired direction.
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Physics-Guided

Experimental 
Data

Domain-specific physical knowledge into the machine learning process, but
rather than enforcing strict constraints, it uses this knowledge as a guide

• Incorporating Prior Knowledge: Prior knowledge on the physics of the system is integrated into the 
network architecture, or as part of the model

•  Capturing Discrepancy: Deep learning models excel in learning from data,even when this contradicts 
prior knowledge.

Haywood-Alexander, Marcus, Wei Liu, Kiran Bacsa, Zhilu Lai, and Eleni Chatzi. "Discussing the Spectra of Physics-Enhanced Machine Learning via a Survey on Structural Mechanics 
Applications." arXiv preprint arXiv:2310.20425 (2023).



2. Physics Guided
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Physics-guided Deep Markov Model 
(PgDMM) for inferring the characteristics 

and latent structure of nonlinear 
dynamical systems from measurement 

data.

Introduce a physical prior model into 
the DMM to guide the training process: 
simplified linear model that excludes 

the cubic term 

Haywood-Alexander, Marcus, Wei Liu, Kiran Bacsa, Zhilu Lai, and Eleni Chatzi. "Discussing the Spectra of Physics-Enhanced Machine Learning via a Survey on Structural Mechanics 
Applications." arXiv preprint arXiv:2310.20425 (2023).



3. Physics Encoded

Physics-Encoded ML a framework that embeds physical knowledge into the 
architecture or design of machine learning models
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Physics-Encoded

Simulated  Data

Constrained Gaussian Process uses prior knowledge to modify the kernel 
function, the likelihood function, or the posterior distribution of the GP model. 

Cross, E.J. and Rogers, T.J.(2021). Physics-derived covariance functions for machine learning in structural dynamics. IFACPapersOnLine,54(7):168–173 
(https://drg-greybox.github.io/publications/).

Via selection of operators, kernels, or transforms such as convolutional layers 
and recurrent layers (physics-inspired layers or modules)



3. Physics Encoded
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Scaled squared-exponential 
kernel

Assume a Gaussian white noise force input kernel

Haywood-Alexander, Marcus, Wei Liu, Kiran Bacsa, Zhilu Lai, and Eleni Chatzi. "Discussing the Spectra of Physics-Enhanced Machine Learning via a Survey on Structural Mechanics 
Applications." arXiv preprint arXiv:2310.20425 (2023).

Duffing Oscillator



4. Delta – Learning Physics-Corrector

• Use a physics-based model to generate training data for an ML model
• The predictions of this physics-trained model will be used to inform a second ML 

model together with experimental data to learn the residuals
• The final predictions are the sum of the initial predictions and residuals to 

compensate for missing physics

14

Delta - Learning Physics-
Corrector

Experimental 
Data

Model 
Corrector Corrected 

Prediction

Model 
Predictor

Physics

Zhang X, Mahadevan S (2020) Bayesian neural networks for flight trajectory prediction and safety assessment. Decis Support Syst 131:113246

Represents the set of strategies where the residuals between physics and  
data-driven ML model are used to update the prediction



5. Delta – Learning Unknown Physics

Represents the set of strategies where a data-driven ML model is used as 
a surrogate to learn and recover the unmodeled physics
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Delta-Learning 
Unknown Physics

Known 
Physics-based 

Mode

The result is a cumulative damage model where the physics-informed layers are used to 
model the relatively well-understood physics (L10 fatigue life) and the data-driven layers 

account for the hard to model components (i.e., grease degradation).

Yucesan YA, Viana FA (2020) A physics-informed neural network for wind turbine main bearing fatigue. Int J Progn Health Manag.



6. Transfer Learning

Strategies focused on using a model already trained on one problem to 
help solve another problem that is similar but not the same
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By pre-training the ML model on the 
synthetic data, the model can learn 

general and robust features and 
representations that capture the 

underlying physical mechanisms.

This strategy can save time and resources by using existing models 
instead of training new ones and can also improve the performance of 
models when there is not enough data for the new problem.



6. Transfer Learning

Strategies focused on using a model already trained on one problem to 
help solve another problem that is similar but not the same
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Physics-informed domain adaptation is a technique 
that combines physics-based models with machine 

learning to improve the accuracy of predictions in new or 
unseen environments. The goal is to adapt a model 

trained on one domain to another domain with different 
characteristics, such as different physical properties or 

environmental conditions. 

Physical laws governing the domain shifts and use a 
small amount of source-domain and target-domain data 

to fit the physical law.

This strategy can save time and resources by using existing models 
instead of training new ones and can also improve the performance of 
models when there is not enough data for the new problem.



6. Physics-Informed Transfer Learning
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Transfer learning can be used to leverage information 
across related domains. The authors proposes utilizing 
the Modal Assurance Criterion (MAC) between modes 
of healthy structures as a measure of data similarity to 
identify features that minimize conditional distribution 

shift. 

Transfer feature criterion that incorporates MAC-
discrepancy into a feature selection criterion to 

address the challenge of selecting features with high 
cross-domain similarity.

Poole, Jack, Paul Gardner, Andrew J. Hughes, Richard S. 
Mills, Thomas A. Dardeno, and Nikos Dervilis. “Physics-
Informed Transfer Learning in PBSHM: A Case Study on 
Experimental Helicopter Blades.” STRUCTURAL HEALTH 
MONITORING (2023).



6. Physics-Informed Transfer Learning
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Gardner, P., L. A. Bull, J. Gosliga, J. Poole, N. Dervilis, and K. Worden. "A population-based SHM methodology for heterogeneous structures: Transferring 
damage localisation knowledge between different aircraft wings." Mechanical Systems and Signal Processing 172 (2022): 108918.

Graphical domain is presented as an 
objective way of assessing structural 

similarity, with distance metrics utilised for 
assessing data-space similarities. 

Knowledge transfer is performed using a 
branch of transfer learning called domain 

adaptation. 

The authors demonstrates a methodology for 
transferring knowledge within a 

heterogeneous population (a group of non-
identical structures). 

Transfer localisation labels from a Gnat 
aircraft wing to an unlabelled Piper Tomahawk 

aircraft wing dataset, resulting in 100% 
classification accuracy



7. Data Augmentation

Improve the performance and generalization of machine learning models,
especially when the original data is insufficient or noisy.
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Data Augmentation

Experimental
Data

Physics

When an accurate and robust knowledge of the first 
principle is available, it is possible to leverage this 
information and run first-principle simulations to 
generate data at various states and operating 
conditions of a physical system.

Set of techniques to artificially increase the amount of data by generating 
new data points from existing data. 



7. Data Augmentation
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Ritto T, Rochinha F (2021) Digital twin, physics-based model, 
and machine learning applied to damage detection in 

structures. Mech Syst Signal Process 155:107614

The authors generated different damage 
scenarios using first-principle simulations 

to augment a training dataset for an ML 
classifier used for damage detection

of a bar structure.



Open Challenges



Open Questions and Challenges
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Uncertainty Quantification 
Incorporating physical laws and constraints into machine learning models can make the quantification of the 

uncertainty for the integrated model a challenge

Generalization
How well do the integrated models generalize?

Interpretability and explainability 
Machine learning models are often considered as black boxes, making it difficult to interpret and explain their 

predictions. Is their introduction helping?

Scalability 
Are the integrated models scalable to large datasets? Is it computationally more efficient?

Data quality 
How integrated models perform in the case of changes in measurements data quality and unbalanced datasets



Questions?
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