IMAC-XL

Synthesizing Dynamic Time-series Data for Structures Under Shock Using Generative Adversarial Networks

Zhymir Thompson

Austin Downey, Jason Bakos, Jie Wei

Submission #12822

Department of Mechanical Engineering Department of Computer Science and Engineering

UNIVERSITY OF SOUTH CAROLINA

Summary

- Validation of state observers for high-rate structural health monitoring requires the testing of state observers on a large library of pre-recorded signals, both uni- and multi-variate.
- However, experimental testing of high-value structures can be cost and timeprohibitive.
- Finite element modeling lacks the fidelity to reproduce the non-stationarities present in the signal, particularly at the higher end of the digitized signal's frequency band.
- In this preliminary work, generative adversarial networks (GANs) are investigated for the synthesis of uni- and multi-variate acceleration signals for an electronics package under shock.
- Results show that GANs are capable of producing material reminiscent of that obtained through experimental testing.

High-rate Dynamic Events

- High-rate dynamic events [1]
 - time scale of less than 100 milliseconds
 - high amplitude exceeding 100 g_n
- High-rate Structural Health Monitoring[3]

3

- "Monitor functional integrity and remaining life"
- "Maximize function, minimize risk"

Car collision [2]

Shock Test System Demonstration

Experiment Setup

GAN Introduction

- Thispersondoesnote xist.com
- Generative Adversarial Network
- Two player game with opposing goals
- Flaws in glasses, artifacts, hair, teeth, etc.
- Efficient, consistent evaluation requires quantitative measure

6

Thispersondoesnotexist[4]

Challenges of GANs

- Training setup
 - Model combination
 - Hyperparameters
 - Training regime
- Detecting/Preventing mode collapse
 - Generator may only produce one example repeatedly
 - Prevent model from failing this way
- Turn quality to quantity for evaluation
 - Need computational way of evaluating model
 - · Evaluation tends to be per model

WGAN explanation

- Changes objective function to energy distance
- Wasserstein distance actual definition
- Cost to go from left to right

Photo by <u>Phil Hearing</u> on <u>Unsplash</u>[5]

Photo by <u>Kit Suman</u> on <u>Unsplash[6]</u>

Latent Dimension

- Typically vector of gaussian noise
 - Point chosen from n-dimensional gaussian distribution
 - i.e. (0.02, 0.00, -1.7, 2.4, ..., 0.03)
- Label included for conditional generation
 - Tuple/List of integers converted to fixed-size binary array
 - i.e. (1, 3, 5) -> [1, 0, 1, 0, 1]
- During inference, fixed-weights lead to consistent generation of data

Generic Training example

- Find good pair of critic and generator
- Generated examples:
 - Vector of gaussian noise fed into generator (along with labels for conditional)
 - Vector size is referred to as latent dimension
 - Latent space is fixed
- Train critic:
 - Feed real and generated samples for training
- Train generator:
 - Feed generated samples into critic
 - Generator trains

Training the time-series WGAN

- Reference signals on left
 - Each row is different accelerometer
 - L2 normalized
 - Closest match to generated by lowest mean squared error
- Generated signals on right
 - Raw generated signals
 - Rows are based on same accelerometer
- All subsection of whole signal
 - Excluded ends have little new information
 - Can focus on most significant time period

Simple Recurrence Plot Examples

- Sine wave
- Disrupted sine wave
- Gaussian noise wave

Sine wave with recurrence plot

- Amplitude: 1
- Frequency: 2
- Shows pattern repeating consistently

Sine wave (excited) with recurrence plot

- Amplitude: 1
- Frequency: 2
- Impulse applied with amplitude 30
- Vertical, wiggly bar implies drastic change in signal
- Pattern returns with decay

Gaussian wave

- Values are variable
- No discernable patterns in recurrence plot
- Vertical bars exist, but less pronounced

Recurrence Plots

- Recurrence plots
 - Graphical representation of correlations in data
 - Point(I, j) is difference between acceleration at time I and acceleration at time j
 - Normalization theoretically limits possible range of values to [0, 2]
 - Brighter dots are greater distance between points
 - Greater distance in some areas can "dim" distance in others
 - Minimum threshold is possible but not used here
- Implementation
 - Real signals always on left
 - Plot is of subsection of whole signal

Accelerometer 1 Recurrence Plot

Accelerometer 2 Recurrence Plot

Accelerometer 3 Recurrence Plot

Accelerometer 4 Recurrence Plot

Time-based metrics

 Low peaked-ness implies low amplitude spikes

	Real Signals	Synthetic Signals
Skewness	2.691	2.474
Kurtosis	55.685	49.444
Shape factor	3.452	3.040
Impulse factor	41.339	33.964
Crest factor	11.823	11.193

time-based metrics

Frequency-based metrics

• Low frequency center with high RMSF suggests energy varies around mean

	Real Signals	Synthetic Signals
Frequency center	22170.812	30027.527
RMSF	36811.092	67507.176
Root variance freq.	29314.880	60308.838

Signal and Power Spectrum

- Left column is data from real test
- Right column is similar generated signal
- Bottom row is power spectrum density plot
- Lower peaks in generated signal
- Higher amounts of high level frequencies (above 250 KHz)
- Generated signals are noisier

Multimodal

- Generated similarly to unimodal
 - Same gaussian noise vector
 - Different labels

31

Conclusion

- This paper proposes a solution for the lack of consistency for high-rate events via GANs
- Using a sample of experiments, the generator can find a mapping across the latent space.

References

Hong, Jonathan, Simon Laflamme, Jacob Dodson, and Bryan Joyce. 2018. "Introduction to State Estimation of High-Rate System Dynamics" Sensors 18, no. 1: 217. https://doi.org/10.3390/s18010217

langthim, marcel. (2016). *Car collision test*. pixabay. Retrieved January 4, 2022, from <u>https://pixabay.com/photos/crash-test-collision-1620592/</u>.

Jacob Dodson, Austin Downey, Simon Laflamme, Michael Todd, Adriane G. Moura, Yang Wang, Zhu Mao, Peter Avitabile, and Erik Blasch. "High-rate structural health monitoring and prognostics: An overview". In *IMAC 39*, February 2021.

This person does not exist. This Person Does Not Exist. (n.d.). Retrieved January 30, 2022, from <u>https://thispersondoesnotexist.com/</u>

Hearing, P. (n.d.). photograph.

Suman, K. (n.d.). photograph.

Which face is real? Which Face Is Real? (n.d.). Retrieved January 30, 2022, from <u>https://www.whichfaceisreal.com/</u>

Questions

South Carolina

