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High-rate Dynamic Events

• High-rate dynamic events [1]

• time scale of less than 100 

milliseconds

• high amplitude exceeding 100 gn

• High-rate Structural Health Monitoring[3]

• “Monitor functional integrity and 

remaining life”

• “Maximize function, minimize risk”

Car collision [1]
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High-rate Dynamic Events Challenge

• Structural changes

• Structure can change significantly 

during an event

• Changes are often permanent and 

change dynamics of structure in 

varying degrees

• Model prediction of structures

• Imagine the King in checkers

• Dynamics used by model are altered, 

model must relearn dynamics
Car collision [1]
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RNN: Recurrent Neural Network

A machine learning model that maintains state 

through time:

• Takes in sequence of inputs in sequential 

order instead of independent batches

• Maintains state in hidden layer to learn with 

short term memory

A typical neural network takes one input at a 

time or batches where each sample is 

independent of others
IBM RNN image [1]
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RNN

• On forward propagation:

• Input and hidden state passed in 

initially

• Output prediction and hidden state 

passed back into RNN until desired 

iterations complete

• On backpropagation:

• Backpropagates ‘through time’

• Compounded loss with decay over 

state

IBM RNN image [1]
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Cantilever Beam Experimental Setup

• Cantilever Beam[2]

• Steel

• 759x 50.66 x 5.14 mm

• Piezoelectric accelerometer [2]

• 0.5-9,000 Hz

• Sensitivity: 100 mV/gElectromagnetic shaker applies sine force to beam [2]

• Nonstationarity introduced during the experiment [2]

• More info here: https://github.com/High-Rate-SHM-Working-Group/Dataset-4-Univariate-

signal-with-non-stationarity [2]

Experiment setup [2]

https://github.com/High-Rate-SHM-Working-Group/Dataset-4-Univariate-signal-with-non-stationarity
https://github.com/High-Rate-SHM-Working-Group/Dataset-4-Univariate-signal-with-non-stationarity
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The non-stationarity

The beam excitation elicits a two 

regimes of frequency response 

separated by some “non-stationarity” 

demarcating the two regimes



8

PaiRNN Design

• Live learning model architecture consisting of 

dual instantiation of an RNN model:

• Predictor – Makes inferences on future 

given current data; given weights derived 

from Learner

• Learner – Makes inferences on current 

data given historical data; adjusts weights 

w.r.t. observed loss

• Each shares 9 weights total; 8 input + 1 

hidden

• Queues – (FIFO) Containers to receive data 

from stream for model inferencing



PaiRNN Performance

• Compared prediction vs observed 
signal at various time slices

• Converges within 1 second

• Adjusts well albeit imperfectly to signal 
post-nonstationarity event

• Each loop takes 500 microseconds 
(upper-bound on average)



Model Architecture

MLP PaiRNN

• Input – 8

• The 8 prior measurements

• Hidden – 8,8,16,16

• Output – 1

• Input – 8

• The 8 prior measurements

• Hidden – 1

• Output – 1

• Back propagates over batches 

of the last 16 measures



Comparison

MLP
PaiRNN

Beginning of 

training

Stationary 

signal before 

non-

stationarity

After non-

stationarity
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Post Nonstationarity Event

• PairRNN trained on stationary 

signal after nonstationarity event
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Predictor Error

• Chart of predictor error over online 

session

• Model loss shows exponential 

decrease until 1.5 seconds followed 

by plateau

• Model shows another slight drop 

around the time of the 

nonstationarity event (though this is 

likely due to the overall drop in 

amplitude rather than improved 

learning)
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Signal Metrics

time frame SNRdB TRAC

pre-nonstationarity 59.139 0.99913

pre-nonstationarity 54.567 0.99998

Signal to Noise Ratio (SNR):

𝑆𝑁𝑅𝑑𝐵 = 10 log10
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒

Time Response Assurance Criterion (TRAC):

Score between [0,1] the similarity between time traces by comparing the numerical error and time delay of 

each estimation. A TRAC score of 1 means perfect timing alignment, while a score of 0 means no temporal 

correlation between signals.

𝑇𝑅𝐴𝐶 =
𝑆𝑟𝑒𝑓
𝑇 ⋅ 𝑆𝑔𝑒𝑛

2

𝑆𝑟𝑒𝑓
𝑇 ⋅ 𝑆𝑟𝑒𝑓 𝑆𝑔𝑒𝑛

𝑇 ⋅ 𝑆𝑔𝑒𝑛
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Funding
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Learner Loss

• Chart of learner loss 

throughout online 

training

• Learner has repeated 

spikes of loss, but most 

loss values are below 

0.6g
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Conclusion

The paper demonstrates that RNNs are capable of concurrently inferencing and learning in an 

online setting.
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