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ABSTRACT

Online time series forecasting of dynamic structural responses subjected to nonstationary inputs enables the development of

prognostic models used to compute the remaining useful life of a structure. Recurrent neural networks are deep learning models

well suited for problems with sequential input data, such as time series. However, as the models are trained offline they cannot

adapt to changes in the structures, due either to damage or inputs to the structure. Recurrent neural networks(RNNs) can have

inference times at the millisecond timescale but suffer from slow training time on the order of hours if trained from an initial



randomized state. This work presents a novel methodology to train an RNN online in real-time for forecasting nonstationary

structural responses without the need for offline initialization. In this paper, a model capable of online learning without halting

inferencing is constructed by utilizing two RNN models of identical architecture to make predictions and learn from past data

concurrently. Typically, a model is unusable during training leading the user to choose between consistent model availability

and using the most up-to-date parameters. Here a compromise is applied such that one can infer future structural responses

and learn from the past for improved adaptation to changes in the structure. For the implementation, the predicting model

responds to inputs from a queue. The learning model will look at past predictions to calculate loss. The loss will be used to

calculate the gradients, and both models will be updated when a chosen number of passes have occurred. This paper provides an

implementation of the proposed algorithm using acceleration data collected from a cantilever beam subjected to a contentious

input with one discrete nonstationarity. The capability for the proposed system to learn over the nonstationarity and the time it

takes to converge back to a steady-state are quantified. The effects of network size and artificial noise added to the signal are

investigated and discussed in this preliminary work.
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INTRODUCTION

Anticipating and predicting the future dynamic states of a structure can enable structural control responses which have effec-

tively zero latency between an incoming event and a control response [1]. In the structural domain, the recorded and predicted

stat could be the acceleration the structure experiences or the strain at a particular point. In a broad theoretical sense, this

challenge can be reduced to anticipating future points in an incoming stream of data. Assuming the data is periodic, one could

construct an appropriate model to accomplish such a feat given sufficient time and resources. An unexpected disruption to

the underlying structure providing the data would compromise the described model’s ability to make future predictions. If the

statistical properties of the signal change due to the unexpected disruption to the underlying structure, these events are called

non-stationary events [2].

Models developed for temporal forecasting should be able to adjust for disruptions. However, there will be a delay for such

models to collect new information post-non-stationary events and make new accurate predictions. This paper proposes the use of

a machine learning architecture that uses a pair of recurrent neural networks (RNN) to learn a signal online, including over non-

stationarities [3]. In theory, the pair of RNNs should be able to constantly make a prediction over data and dynamically adjust

to changes in data caused by unexpected disruptions. The idea of using multiple models to infer and update simultaneously was

proposed by Panahi et al. [3] and used a pair of multilayer perceptrons (MLP) of identical architecture to learn and infer. MLPs

work very well for updating in a stochastic environment, but occasionally struggle to utilize the information learned in earlier

training.



Figure 1: The general structure for the proposed pair of models.

BACKGROUND

RNNs are a useful model for making predictions on time-series data since they use the previous state to make future inferences.

For this reason, it was believed that replacing MLPs with RNNs would improve prediction capability. Despite this, vanilla

RNNs have known disadvantages that could negate the expected improvements. Variations of RNNs also exist that attempt to

compensate for the drawbacks of vanilla RNNs. However, the discussion and evaluation of RNN variants go beyond the scope

of this paper.

Figure 1 shows the general structure for the proposed model. Data is collected from the data stream and fed to queues. The

inferring model receives the latest set of data, and the learning model receives a pair composed of the past data necessary to

predict the current data point along with the current data point. The models concurrently pull data from the respective queues

and perform their roles independently. The inferring model makes and sends predictions based on the data given in the input

queue, and the learning model makes predictions, calculates loss between the predictions and recorded values, backpropagates

and updates model parameters based on calculated loss, and sends those updated weights to the learning model. When the

learning model has a pause between inferences, it updates its weights to the new weights sent by the learning model. This way,

the inferring model can always be available to infer on new data and still be capable of adjusting to new information.

The hyperparameters were chosen by tuning using optuna [4]. The hyperparameters investigated were optimizer type (choices

were SGD or Adam), learning rate, number of layers, and how many points to infer before backpropagation(sequence length).

The best performing values for these hyperparameters were SGD, 0.07, 1 layer, and 2 respectively. Before online training,



the model was tested in an offline setting to determine its baseline performance. The model was trained on 100,000 points of

contiguous data [5]. The data used in the experiment can be found in the open source data set developed by Chowdhury et

al. [5]. Figure 2 shows the data used for the experiment [5]. Important to the experiment is the change from 4.5s to 5.5s. That

region shows the response of the system to the nonstationarity event.

Figure 2: Data to be forecasted with a non-stationary event at approximately 4.75 s, from an open-source dataset [5].

For online training, each model of the pair took seven input values and produced a single output. The models looked at the last

7 time-steps of acceleration data to make a prediction of the acceleration 10 time-steps into the future. Every time the window

slid ten time-steps, the learner would backpropagate, update weights according to error, send the updated weight data to the

predictor, and reset the hidden state. The predicting model would simultaneously infer on given data and its weights would

update whenever new weight parameters were available. 200,014 points of acceleration data were fed to the model, and the

predicting model made 200,000 predictions over the data [5]. The set chosen included the introduction of nonstationarity to

observe model performance before and after the event. Mean squared error (MSE) was the chosen function chosen for training,

and that metric was converted to RMSE in the loss curve to provide a more tangible loss value. Time Response Assurance

Criterium (TRAC) [6] and Signal-to-noise ratio (SNR) were used for evaluation. The TRAC value quantifies the similarity

between time traces on a scale from 0 to 1 through comparing the numerical error and time delay of each estimation.



Figure 3: The loss curve over the course of training.

ANALYSIS

Figure 3 shows the loss curve over the course of training. The model quickly converged to a low loss value and maintained

low loss throughout the duration of training. Despite an initial error of 0.7 gn, the model quickly adapted and began producing

accurate predictions with less than 0.01 g error before 0.75 ms had passed.

Figure 4 shows slices of the predictions and observed values recorded during online training. Part (a) shows the predictions

and observed acceleration over the entire slice of data used. Part (b) of figure 4 suggests a large initial convergence time. The

model has a comparatively large error that slowly converges to fit the observed signal. The most probable causes for this kind of

initial error are improper model architecture or a consequence of the pair architecture. The increase in error initially suggests a

mixture of the two, but more than likely the model architecture is the biggest contributor. However, when the model eventually

converges it fits to the signal well. This behavior is seen in part (c). There exists small errors near peaks and troughs, but the

difference is negligible. The model shows difficulty fully fitting to the model after the nonstationarity as shown by part (d).

This behavior is expected, but modifying model architecture would likely improve model performance.

Table 1 shows the scores for TRAC, SNR, and RMSE for the slices in time shown in parts (c) and (d) of Figure 4. Row

one shows the metrics for the signal output predicted before the non-stationarity event. Row two shows the predicted signal

at a later point after the nonstationarity. The given metrics suggest a strong fit to the reference signal. The SNR shows the

predictions match the anticipated signal with minor interference. The high TRAC score shows that the signals closely match.

These metrics are further supported by RMSE which shows that the predicted model has an average error of 0.007 gn. After the

nonstationarity, there is a clear drop in performance. The SNR decreases by approximately 3.4 dB, and the TRAC decreases



Figure 4: Comparison of predictions and actual acceleration values at different time segments for online training.(a) The entire
slice of data observed, (b) beginning of observed data, (c) slice of time before nonstationarity, (d) slice of time after
nonstationarity.

by about 0.11. In this case, these metrics paint a better picture of the ability for the model to adapt than RMSE which suggests

minor error. While the error is small, there is also a noticeable drop in amplitude for the observed signal, as shown in figure 4(d).

Table 1: Metrics for comparison of model prediction to observed values.

time frame SNRdB TRAC RMSE

pre non-stationarity 54.120 0.997 0.001
post non-stationarity 39.457 0.840 0.007



CONCLUSION

This paper demonstrates the ability of a pair of RNNs to simultaneously predict and learn in an online environment. There still

exists an initial delay due to necessary convergence time, but the model adjusts well to changes to the environment. Future work

includes improving model response time and utilizing different architecture types to find ideal performance (LSTM, GRU, etc.).

Future work could include the combination of this pair architecture with a physics-based model to improve overall prediction

power. The accuracy of a physics-based model in conjunction with the responsiveness of a data-driven model could develop

into a better predictor overall than either alone.
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