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Formal Definition for High-Rate Dynamic Events

High-rate dynamics are described as a dynamic response from a 

high-rate (<100 ms) and high-amplitude (acceleration > 100 g) 

event such as a blast or impact.

The high-rate problem contains many complexities that can be 

summarized as having:

1) large uncertainties in the external loads;

2) high levels of non-stationarities and heavy disturbances; and

3) generated unmodeled dynamics from changes in system 

configuration.
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Long-Term Goal: Real-Time Decision-Making for Structures 
Experiencing High-Rate Dynamics

Real-time decision making requires the development of two key enabling technologies:

1) low-latency (2 ms) model updating; and

2) near-time prognostics of the system state.
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Challenges Related to Computing on the Edge 

In the development of solutions for this problem we are operating within the following constraints:

⚫ Computational power at the edge is limited. This includes memory, processors, and available energy. 

⚫ The system is too complex to pre-calculate a library of existing fault cases. 

⚫ The inputs (forces, location) will never be known.

⚫ Rare and extreme events will happen and must be accounted for.

Team Eglin Public Affairs Team Eglin Public Affairstonyrogers.com
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Methodology
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Background: Machine Learning, Training Vs. Inference

nvidia.com/blog/2016/08/22/difference-deep-learning-training-inference-ai/

Inference is where capabilities learned during training are put to work:

⚫ Training: Learning a new capability from existing data. 

⚫ Inference: Applying this capability to new data.
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Algorithmic Approaches

I-MLP (“Iterative MLP”)
• A single MLP model is updated sample-by-sample over the course of the 

whole dataset
• New prediction is produced for a pre-specified number of timesteps in the 

future when an internal buffer reaches capacity
• Parameters: history length, forecast length
W-MLP (“Windowed MLP”)
• MLP model is replaced every certain number of timesteps
• Trained across a fixed-length buffer of training window samples, sliced 

iteratively into sample windows with non-overlapping slices
• Parameters: training window, sample window
Common parameters: training epochs, hidden layer size
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Algorithmic Approaches
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Test Bench
&

Training Data
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Data Generation
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• Steel cantilever beam setup is used to produce data 
consisting of high-rate dynamic events

• Data produced is a vibration signal that contains a non-
stationary event (NSE) characterized by a sudden shift 
in amplitude

• Goal is to compare the performance of I-MLP and W-MLP 
when subject to the NSE

• This collapses down to an online time-series prediction 
problem



Test Bench Setup
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Training Data

• Total of 19.7 s of vibration data, with NSE occurring 
9.775 s into the dataset

• Dataset is grounded at NSE
• Final dataset is a 256x down-sample of the original 

raw data to accelerate training and inference times
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Training Data
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Results
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Optimal Model Configurations

I-MLP:
History length = 40
Forecast length = 10
Epochs per sample = 10
Hidden layer size = 100

W-MLP:
Training window = 100
Sample window = 50
Epochs per window = 200
Hidden layer size = 10
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Convergence Time Analysis

• To directly compare each algorithm’s response to the NSE, we analyze the 
100 ms sliding standard deviation of each algorithm’s predictions 
compared to the same for the ground truth

• The sliding standard deviation is calculated per-sample using the following 
equation:

𝝈[𝐷] 𝑡 =
1

𝑁
෍

𝑖∈ℐ(𝑡)

𝑥𝑖 − ҧ𝑥 2

𝐷 represents the dataset over which the sliding  standard deviation is being calculated (here, the ground 
truth, the predictions made by I-MLP, and the predictions made by W-MLP), 𝑥𝑖 is the 𝑖𝑡ℎ sample of the 
dataset, ℐ(𝑡) is the set of indices of the samples with time values in the range [𝑡 − 100 𝑚𝑠, 𝑡], 𝑁 is the 
cardinality of ℐ(𝑡), and ҧ𝑥 is the mean of all 𝑥𝑖 , 𝑖 ∈ ℐ(𝑡)
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Convergence Time Analysis

Left: The time series predictions made by (a) I-MLP, 
(b) W-MLP within [-0.25, +1.25] s of the non-
stationarity event, and; (c) the sliding standard 
deviations of the observed data and the predictions 
made by each algorithm using a 100 ms window.

It is interesting to note that I-MLP experiences a 
significant jump in its sliding standard deviation 
before converging to the standard deviation of the 
ground truth, whereas in the case of W-MLP, the 
sliding standard deviation experiences a less 
sudden change in standard deviation but takes a 
longer time to converge to the ground truth sliding 
standard deviation.
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Convergence Time Analysis

• To objectively determine the amount of time each model takes to 
converge, we apply agglomerative hierarchical clustering 
along the time dimension of the datapoints within +/- 5% of the 
sliding standard deviation values of the ground truth

• This method accounts for any instances where the sliding 
standard deviation of a model comes close to the sliding standard 
deviation of the ground truth but then re-diverges
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Convergence Time Analysis

Left: (a) Sliding standard deviations of the 
observed data and the predictions; (b) results 
of hierarchical clustering for I-MLP, and; (c) 
results of hierarchical clustering for W-MLP. 
The convergence time for each algorithm is 
equal to the time coordinate of the first 
datapoint of the rightmost cluster.

Hyperparameters: cluster size of 3, linkage 
criterion based on the minimum Euclidean 
distances between the samples in each cluster

Based on this method, I-MLP converges just 
over twice as fast as W-MLP.
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Sliding RMSE Windows

Left: Sliding RMSEs for (a) I-MLP and (b) W-MLP; 
overlays of the (c) 10 ms RMSE sliding window and (d) 
100 ms RMSE sliding window for the I-MLP and W-
MLP respectively.

➢In the short-term lookback case, I-MLP appears to 
behave less volatile and remain mostly below the 
values of W-MLP after the NSE

➢Long-term lookback case shows the sliding RMSE of 
W-MLP to peak above the sliding RMSE of I-MLP 
before re-convergence

➢I-MLP outperforms W-MLP on the interval from 
0.37 s to 0.82 s, though both algorithms perform 
comparably from thereon
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Cumulative Metrics

Right: radar plot presenting cumulative metrics for 
each algorithm. Real computation time values are 
based on a full traversal of the dataset on a 
workstation computer with an Intel Core i7-7600U 
series CPU.

➢I-MLP overall RMSE is nearly 40% higher than 
W-MLP overall RMSE, indicating that periodically re-
initializing a neural network’s weights has a positive 
effect on prediction accuracy

➢I-MLP takes over three times as long to run 
compared to W-MLP, likely due to its need to re-train 
its neural network using multiple epochs upon 
obtaining a new sample
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Conclusions & Future Work
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• W-MLP performs better in overall error (measured as the root mean square error) 
and requires less computational resources

• I-MLP converges faster following an NSE

• More broadly: periodically re-initializing a neural network’s weights leads to 
higher overall accuracy in online time series prediction, at the expense of longer 
re-convergence after experiencing NSEs

Future work:
• Evaluate tradeoff between learning rate and epochs for I-MLPs
• Experiment with other machine learning architectures (LSTM, gradient boosting, 

random forest, etc.) 

26



Thanks!
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