
REAL-TIME FORECASTING OF VIBRATIONS WITH
NON-STATIONARITIES

Ishrat Singh1, Philip Conrad1, Puja Chowdhury2, Jason D. Bakos1, and Austin Downey2,3

1Department of Computer Science and Engineering

2Department of Mechanical Engineering

3Department of Civil and Environmental Engineering

University of South Carolina, Columbia, SC

1

Table of Contents

⚫ Introduction

⚫ Methodology

⚫ Test Bench & Training Data

⚫ Results

⚫ Conclusions

2

Hypersonic Vehicles

Active Blast Mitigation

Structures Experiencing High-Rate Dynamic Events

Ballistics Packages

3

Formal Definition for High-Rate Dynamic Events

High-rate dynamics are described as a dynamic response from a

high-rate (<100 ms) and high-amplitude (acceleration > 100 g)

event such as a blast or impact.

The high-rate problem contains many complexities that can be

summarized as having:

1) large uncertainties in the external loads;

2) high levels of non-stationarities and heavy disturbances; and

3) generated unmodeled dynamics from changes in system

configuration.

4

Long-Term Goal: Real-Time Decision-Making for Structures
Experiencing High-Rate Dynamics

Real-time decision making requires the development of two key enabling technologies:

1) low-latency (2 ms) model updating; and

2) near-time prognostics of the system state.

5

Challenges Related to Computing on the Edge

In the development of solutions for this problem we are operating within the following constraints:

⚫ Computational power at the edge is limited. This includes memory, processors, and available energy.

⚫ The system is too complex to pre-calculate a library of existing fault cases.

⚫ The inputs (forces, location) will never be known.

⚫ Rare and extreme events will happen and must be accounted for.

Team Eglin Public Affairs Team Eglin Public Affairstonyrogers.com
6

Methodology

7

Background: Machine Learning, Training Vs. Inference

nvidia.com/blog/2016/08/22/difference-deep-learning-training-inference-ai/

Inference is where capabilities learned during training are put to work:

⚫ Training: Learning a new capability from existing data.

⚫ Inference: Applying this capability to new data.

8

Algorithmic Approaches

I-MLP (“Iterative MLP”)
• A single MLP model is updated sample-by-sample over the course of the

whole dataset
• New prediction is produced for a pre-specified number of timesteps in the

future when an internal buffer reaches capacity
• Parameters: history length, forecast length
W-MLP (“Windowed MLP”)
• MLP model is replaced every certain number of timesteps
• Trained across a fixed-length buffer of training window samples, sliced

iteratively into sample windows with non-overlapping slices
• Parameters: training window, sample window
Common parameters: training epochs, hidden layer size

9

Algorithmic Approaches

10

Algorithmic Approaches

11

Test Bench
&

Training Data

12

Data Generation

13

• Steel cantilever beam setup is used to produce data
consisting of high-rate dynamic events

• Data produced is a vibration signal that contains a non-
stationary event (NSE) characterized by a sudden shift
in amplitude

• Goal is to compare the performance of I-MLP and W-MLP
when subject to the NSE

• This collapses down to an online time-series prediction
problem

Test Bench Setup

14

Training Data

• Total of 19.7 s of vibration data, with NSE occurring
9.775 s into the dataset

• Dataset is grounded at NSE
• Final dataset is a 256x down-sample of the original

raw data to accelerate training and inference times

15

Training Data

16

Results

17

Optimal Model Configurations

I-MLP:
History length = 40
Forecast length = 10
Epochs per sample = 10
Hidden layer size = 100

W-MLP:
Training window = 100
Sample window = 50
Epochs per window = 200
Hidden layer size = 10

18

Convergence Time Analysis

• To directly compare each algorithm’s response to the NSE, we analyze the
100 ms sliding standard deviation of each algorithm’s predictions
compared to the same for the ground truth

• The sliding standard deviation is calculated per-sample using the following
equation:

𝝈[𝐷] 𝑡 =
1

𝑁
෍

𝑖∈ℐ(𝑡)

𝑥𝑖 − ҧ𝑥 2

𝐷 represents the dataset over which the sliding standard deviation is being calculated (here, the ground
truth, the predictions made by I-MLP, and the predictions made by W-MLP), 𝑥𝑖 is the 𝑖𝑡ℎ sample of the
dataset, ℐ(𝑡) is the set of indices of the samples with time values in the range [𝑡 − 100 𝑚𝑠, 𝑡], 𝑁 is the
cardinality of ℐ(𝑡), and ҧ𝑥 is the mean of all 𝑥𝑖 , 𝑖 ∈ ℐ(𝑡)

19

Convergence Time Analysis

Left: The time series predictions made by (a) I-MLP,
(b) W-MLP within [-0.25, +1.25] s of the non-
stationarity event, and; (c) the sliding standard
deviations of the observed data and the predictions
made by each algorithm using a 100 ms window.

It is interesting to note that I-MLP experiences a
significant jump in its sliding standard deviation
before converging to the standard deviation of the
ground truth, whereas in the case of W-MLP, the
sliding standard deviation experiences a less
sudden change in standard deviation but takes a
longer time to converge to the ground truth sliding
standard deviation.

20

Convergence Time Analysis

• To objectively determine the amount of time each model takes to
converge, we apply agglomerative hierarchical clustering
along the time dimension of the datapoints within +/- 5% of the
sliding standard deviation values of the ground truth

• This method accounts for any instances where the sliding
standard deviation of a model comes close to the sliding standard
deviation of the ground truth but then re-diverges

21

Convergence Time Analysis

Left: (a) Sliding standard deviations of the
observed data and the predictions; (b) results
of hierarchical clustering for I-MLP, and; (c)
results of hierarchical clustering for W-MLP.
The convergence time for each algorithm is
equal to the time coordinate of the first
datapoint of the rightmost cluster.

Hyperparameters: cluster size of 3, linkage
criterion based on the minimum Euclidean
distances between the samples in each cluster

Based on this method, I-MLP converges just
over twice as fast as W-MLP.

22

Sliding RMSE Windows

Left: Sliding RMSEs for (a) I-MLP and (b) W-MLP;
overlays of the (c) 10 ms RMSE sliding window and (d)
100 ms RMSE sliding window for the I-MLP and W-
MLP respectively.

➢In the short-term lookback case, I-MLP appears to
behave less volatile and remain mostly below the
values of W-MLP after the NSE

➢Long-term lookback case shows the sliding RMSE of
W-MLP to peak above the sliding RMSE of I-MLP
before re-convergence

➢I-MLP outperforms W-MLP on the interval from
0.37 s to 0.82 s, though both algorithms perform
comparably from thereon

23

Cumulative Metrics

Right: radar plot presenting cumulative metrics for
each algorithm. Real computation time values are
based on a full traversal of the dataset on a
workstation computer with an Intel Core i7-7600U
series CPU.

➢I-MLP overall RMSE is nearly 40% higher than
W-MLP overall RMSE, indicating that periodically re-
initializing a neural network’s weights has a positive
effect on prediction accuracy

➢I-MLP takes over three times as long to run
compared to W-MLP, likely due to its need to re-train
its neural network using multiple epochs upon
obtaining a new sample

24

Conclusions & Future Work

25

• W-MLP performs better in overall error (measured as the root mean square error)
and requires less computational resources

• I-MLP converges faster following an NSE

• More broadly: periodically re-initializing a neural network’s weights leads to
higher overall accuracy in online time series prediction, at the expense of longer
re-convergence after experiencing NSEs

Future work:
• Evaluate tradeoff between learning rate and epochs for I-MLPs
• Experiment with other machine learning architectures (LSTM, gradient boosting,

random forest, etc.)

26

Thanks!

27

