
OPTIMIZATION OF RAPID STATE ESTIMATION IN STRUCTURES SUBJECTED TO
HIGH-RATE BOUNDARY CHANGE

James Scheppegrell ∗

Applied Research Associates
Emerald Coast Division
956 John Sims Pkwy W.

Niceville, FL 32578
Email:jscheppegrell@ara.com

Adriane G. Moura
Applied Research Associates

Emerald Coast Division
956 John Sims Pkwy W.

Niceville, FL 32578
Email:amoura@ara.com

Jacob Dodson
Air Force Research Laboratory

Eglin Air Force Base
203 Eglin Blvd, Eglin AFB, FL 32542

jacob.dodson.2@us.af.mil

Austin Downey
University of South Carolina
Departments of Mech. Eng.

and Civil, Const. and Env. Eng.,
Columbia SC, 29208

Email:austindowney@sc.edu

ABSTRACT
Many structures are subjected to varying forces, moving

boundaries, and other dynamic conditions. Whether part of a ve-
hicle, building, or active energy mitigation device, data on such
changes can represent useful knowledge, but also presents chal-
lenges in its collection and analysis. In systems where changes
occur rapidly, assessment of the system’s state within a useful
time span is required to enable an appropriate response before
the system’s state changes further. Rapid state estimation is es-
pecially important but poses unique difficulties.

In determining the state of a structural system subjected to
high-rate dynamic changes, measuring the frequency response is
one method that can be used to draw inferences, provided the sys-
tem is adequately understood and defined. The work presented
here is the result of an investigation into methods to determine
the frequency response, and thus state, of a structure subjected
to high-rate boundary changes in real-time.

In order to facilitate development, the Air Force Research

∗Address all correspondence to this author.

Laboratory created the DROPBEAR, a testbed with an oscillat-
ing beam subjected to a continuously variable boundary condi-
tion. One end of the beam is held by a stationary fixed support,
while a pinned support is able to move along the beam’s length.
The free end of the beam structure is instrumented with acceler-
ation, velocity, and position sensors measuring the beam’s ver-
tical axis. Direct position measurement of the pin location is
also taken to provide a reference for comparison with numerical
models.

This work presents a numerical investigation into methods
for extracting the frequency response of a structure in real-time.
An FFT based method with a rolling window is used to track
the frequency of a data set generated to represent the range of
the DROPBEAR, and is run with multiple window lengths. The
frequency precision and latency of the FFT method is analyzed
in each configuration. A specialized frequency extraction tech-
nique, Delayed Comparison Error Minimization, is implemented
with parameters optimized for the frequency range of interest.
The performance metrics of latency and precision are analyzed

Proceedings of the ASME 2020 Conference on Smart Materials, 
Adaptive Structures and Intelligent Systems 

SMASIS2020 
September 15, 2020, Virtual, Online 

SMASIS2020-2306

1 Copyright © 2020 ASME

This work was authored in part by a U.S. Government employee in the scope of his/her employment. 
ASME disclaims all interest in the U.S. Government’s contribution.



and compared to the baseline rolling FFT method results, and
applicability is discussed.

INTRODUCTION
Many systems and structures are in use or presently under

development which experiments high-rate dynamic events, de-
fined as changes occurring on the time scale of 100ms less [1].
In these systems, many of the parameters being monitored are
part of a process being continuously managed by a control loop
and therefore part of a system’s normal operation. In many cases,
there exists a possibility that these systems will be subjected to
conditions or states which are undesirable or will result in dam-
age. Therefore, reacting to an intermediate state before it pro-
gresses further allows for an improved outcomes for the system.
These applications and others have led to the desire for an ob-
server which can assess the state of these structures and sys-
tems, determine the conditions, and make decisions based on the
state while the assessment remains relevant. Such observers have
potential applications in far-ranging fields, including machinery
and automation, blast mitigation, and hypersonic aircraft [2–5].
While the applications may appear disparate, the similarities in
their needs have provided motivation to develop general-purpose
tools that can be used to create the solutions needed for each case.

The objective of this research is to design, implement, and
demonstrate a frequency-based observer which can estimate the
state of a complex system with sufficient precision and speed.
Achieving the goal of a useful observer in this scenario requires
consideration of the structure’s properties, determination through
modeling and/or testing of what collectible information is most
useful, and implementing the computational steps in a way that
minimizes processing time on a system which is suitably fast.

One method commonly used for extraction of frequency in-
formation from a signal is the Fast Fourier Transform or FFT.
While a powerful tool, FFTs are computationally intensive and
face other drawbacks. When computing the discrete Fourier
Transform using a method such as the Cooley-Tukey FFT algo-
rithm [6], there is a linear relationship between the length of the
input sample and the number of output bins generated. It then
follows that a requirement for adequately precise bin spacing is
also a requirement on time spent collecting the sample, which
potentially conflicts with the need for short delay in a system’s
feedback response. Thus, an FFT based approach will face chal-
lenges of lag, difficulty identifying transients, and/or inadequate
frequency precision.

When the dynamics of a system are adequately understood,
and responses can be expected to fall within a known range, al-
ternatives to the FFT can offer improved performance character-
istics and mitigate or avoid the identified drawbacks. What fol-
lows is an investigation into a frequency measurement method
intended to allow for tracking in high-rate systems, and a com-
parison to FFT based frequency tracking performance.

FIGURE 1. Data from a sub-second system showing response from
four consecutive tests on the same system.

The contributions of this work are the proposal and demon-
stration of the Delayed Comparison Error Minimization fre-
quency extraction method. The theory of the method is laid out, a
functional implementation is developed, and the performance of
the method is investigated beside the FFT approach. The results
provide strong evidence for the applicability and advantages of
the new method in high-rate state estimation.

BACKGROUND
An event that experiences high-rate dynamics is one that

happens on a time-scale of less than 100 ms and is character-
ized by: 1) large uncertainties in external loads; 2) high levels
of nonstationarities and heavy disturbances; and 3) generation of
unmodeled dynamics from changes in system configuration [1].
These specific challenges were discussed and demonstrated by
Hong et al. using realistic experimental data [7]. In this prior
work, the experiment consisted of an electronics unit housing
circuit boards and accelerometers ruggedized for shock surviv-
ability and tested in an accelerated drop tower to create high
impact conditions. For this study, the electronic test unit was
subjected to four consecutive accelerated drops. Figure 1 plots
a portion of the results. This prior study demonstrates the three
challenges that characterize high-rate dynamics: 1) Unknown ex-
ternal loading; 2) A high levels of nonstationarities (e.g., no con-
sistent running mean) and heavy disturbances; and 3) Changes in
the structures response for back-to-back tests. This prior study
demonstrates the challenges associated with high-rate dynamic
events, in particular, the dynamics of the system operate on a
very short time-scale and internal damage to the structure causes
the dynamics to vary from one event to the next.

While the previously discussed accelerated drop tower ex-
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FIGURE 2. The Dynamic Reproduction of Projectiles in Ballistic En-
vironments for Advanced Research (DROPBEAR) experimental testbed
with key components annotated.

periments clearly demonstrate the challenges associated with
high-rate dynamics, the destructive nature of the tests adds com-
plexity to the development and experimental validation observers
designed for the rapid state estimation of structures subjected to
high-rate dynamic events. For this reason, the Dynamic Repro-
duction of Projectiles in Ballistic Environments for Advanced
Research (DROPBEAR) testbed was initially introduced and
modeled by Joyce et al. [8] and is presented in figure 2. The
DROPBEAR is a cantilever beam featuring two time-varying,
user-controlled parameters: a continuously movable roller con-
straint and a detachable mass (not shown in current setup). It is
designed such that the movable roller introduces a nonstation-
ary boundary condition into the system, while the mass drop
simulates sudden damage to the system. In both cases, the pa-
rameter changes were designed to produce repeatable and con-
trollable change in the system dynamics, intended to simulate
changes occurring in a structural system (i.e. damage). The non-
destructive nature of these changes provides a level of repeata-
bility that is unobtainable in the previously discussed accelerated
drop tower experiments. In prior work, the DROPBEAR was
used by Downey et al. to develop a millisecond model-updating
technique that updated an FEA model of the structural system
by minimizing the error between the model and the system in
the frequency domain. Experimental results demonstrated that
the roller’s location updated every 4.04 ms with an accuracy of
2.9% [9].

As discussed before, the DROPBEAR testbed is intended
to be representative of the generalized form of many real world
systems, possessing a variable parameter that influences the sys-
tem response in a non-linear fashion. The ability to record the
controlled parameter precisely also helps with verification of the
output of predictive systems processing data generated by the
DROPBEAR. For these reasons, data collected from the DROP-
BEAR was used to guide the creation of synthetic data sets for

TABLE 1. Definitions for the components used in the Delayed Com-
parison Error Minimization technique.

Parameter Definition

SamplingRate Sampling rate used to collect data.

Signal Periodic signal of unknown frequency.

Reference List of the last 100 samples from Signal.

Comparison List of 100 delayed samples from Signal.

Difference List of Reference - Comparison.

DifferenceSquare Error2

DifferenceSquareSum A single value representing the sum

of values in the list ErrorSquare.

SumVsDelay ErrorSquareSum values arranged by delay.

SignalPeriod Signal period length, in samples.

Frequency Frequency of Signal in Hz.

initial testing and development. As demonstrated by Downey et
al. in Ref. [9], when an accelerometer is used to capture DROP-
BEAR’s response to a dynamic input, and this data set was ana-
lyzed using the FFT method described in more detail later, there
exists non-trivial challenges of achieving the frequency compo-
nents of the system with adequate precision and suitably low
lag. With knowledge of how this physical system responded,
synthetic data sets represent an attempt to isolate challenging as-
pects in order to better understand what data characteristics will
challenge frequency tracking tools.

METHODOLOGY
This section explains in further detail how each frequency

detection method operates, the characteristics and quality of the
output that will be generated, and how variations in tuning pa-
rameters or data characteristics will affect them.

Rolling FFT
The FFT, or Fast Fourier Transform, is a commonly used

method for converting a signal from the time domain to the fre-
quency domain. When the FFT is provided a real input with an
even number of samples, the output will include half that many
positive frequency bins. The bins will be spaced evenly from DC
up to a frequency equal to half the sampling rate of the signal, of-
ten called the Nyquist frequency. This means that the frequency
spacing between adjacent bins, which can also be interpreted as
the frequency precision, will be equal to the sampling rate di-
vided by the number of samples provided by the FFT. The mag-
nitude of the number contained by a given bin is proportional to
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Algorithm 1 Pseudocode for the Delayed Comparison Error Minimization Method
1: collect 400 data points from Signal
2: for 300 Cycles do
3: Reference = 100 most recent data points
4: Comparison = 100 data points, starting from delay equal to the cycle count
5: Difference = point by point difference between Reference and Comparison
6: DifferenceSquare = Difference*Difference
7: ErrorSquareSum = sum of all points in ErrorSquare
8: append ErrorSquareSum value to SumVsDelay
9: end for

10: SignalPeriod = position of minimum value between the 100th and 200th point in
SumVsDelay

11: calculate Frequency using SignalPeriod and SamplingRate

the absolute value of the amplitude and duration of the frequency
components in the original signal which falls between that bin’s
upper and lower frequency boundaries. The time at which a fre-
quency component occurred within a sample analyzed by an FFT
can not be determined by the FFT’s output. Additionally, a com-
ponent with a high amplitude and short duration can result in a
bin magnitude identical to one caused by a component of greater
duration and lesser amplitude. While these limitations are well
known, [9] they are restated here to emphasize some of the chal-
lenges the use of FFTs pose in tracking the frequency of a rapidly
time-varying signal.

The desired application for which the FFT is being em-
ployed in this paper is determining the response of a time-varying
system, with minimal delay. However, analyzing the complete
signal does not provide information as to when each frequency
component occurred. To solve this challenge, the FFT of the
time-series data is computed using a moving window that ana-
lyzes the time-series signal section-by-section. Similar to shutter
speed in photography or videography, an observation made dur-
ing a sample could have occurred at any time during it. The
shorter each analyzed section is, and the more frequently the
analysis is performed, the more closely the frequency can be
tracked in the time domain. However, the frequency precision
of an FFT decreases with a reduction of the window size. In
attempting to use the FFT method to track the frequency of a
signal which changes with time, it becomes apparent that com-
promises are necessary. Therefore, this work uses a selection
of FFT lengths to demonstrate the trade-offs between accuracy
in the time domain and accuracy in the frequency domain. It
is worth noting that increasing the sampling rate increases the
Nyquist frequency as well as increasing the number of bins gen-
erated by the FFT and therefore has little appreciable effect on
the FFT’s accuracy in the frequency-domain.

In this work, the fundamental frequency of the system is ex-
tracted from the frequency-domain of the FFT output by select-
ing the frequency, within the relevant/expected frequency range,

associated with the bin that contains the highest magnitude. The
time coordinate for this frequency measure corresponds to that
of the last time-series data point used in the FFT. Therefore, the
plots in this work present the time alignment as it would appear
if the FFTs were performed in real-time on an idealized system
with no computational delay.

Delayed Comparison Error Minimization
Similar to the FFT approach, the Delayed Comparison Er-

ror Minimization technique allows for the detection of the natu-
ral frequency of the system, but does not require as long win-
dow lengths to generate similarly accurate frequency estima-
tions. Therefore, the delayed comparison technique can gen-
erate an accurate estimation of the system’s fundamental fre-
quency with a reduced lag-time when compared to the FFT-
based approach. The principle by which the delayed comparison
technique works is to compare sections of samples taken from
the same periodic signal, with known time differences between
them. By finding what time difference results in the greatest sim-
ilarity, one can thus determine the period of the signal if it has a
periodic component. A similar approach is outlined in [10].

The implementation used in this paper uses the calculation
of a point by point difference, point by point square of each dif-
ference, and summation of all squared difference values. In a
basic implementation of this method, the bandwidth can extend
from the frequency possessing a period equal to the time dif-
ference, or delay, up to half the sampling rate. The frequency
precision will be equal to the sampling rate of the data provided.

Algorithm 1 presents pseudocode for the Delayed Compari-
son Error Minimization technique while Table 1 provides a def-
initions for the variables used in this work. Moreover, figures
3-6 report a graphical representation of the technique. A 7 step,
step-by-step example of the implementation used for this work
is as follows. (1), see figure 3(a). A section of data is selected,
starting from the beginning of the data set, with zero on the right-
hand side of the figure, and spanning a length comprising the
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FIGURE 3. DEMONSTRATION OF THE STEPS TO DETERMINE
WAVE PERIOD: SUMMED SQUARED ERROR EVALUATED AT 0
DELAY. (a): SIGNAL, REFERENCE AND COMPARISON (b): REF-
ERENCE AND COMPARISON OVERLAPPED, DIFFERENCE (c):
DIFFERENCE SQUARED (d): SUM VS DELAY AND CURRENT
SUM

sum of two parameters. The parameters are the length of the
longest period to be detected, and the length of the “reference”
and “comparison” data sections. As implemented, these values
are 300 and 100 samples, respectively, or 30ms and 10ms at the
10,000 sample/second sampling rate. (2), again see figure 3(a).
The last 100 samples are copied to “reference”, and on the first
cycle, shown in figure 3, the same 100 values are also copied to
“comparison”. (3), see figure 3(b). The difference between each

FIGURE 4. DEMONSTRATION OF THE STEPS TO DETERMINE
WAVE PERIOD: SUMMED SQUARED ERROR EVALUATED AT
10ms OR 100 SAMPLES DELAY

of the 100 points in “reference” and their corresponding point in
“comparison” is found, resulting in a 100 digit long difference
list. (4), figure 3(c). Each of these values is squared, and then
(5) the values are summed, see “Current Sum” in figure 3(d).
(6) This value is stored as the first value in “sum vs delay”, a
list of difference squared sums versus delay values, representing
the difference at 0 delay. Steps (2) through (6) in this process
are repeated, with the samples for “comparison” being collected
from a position one sample earlier in the data set each time, and
the value accordingly being appended to the “sum vs delay” list,
visible as “Sum vs Delay” in figure 3(d), representing a delay 1
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FIGURE 5. DEMONSTRATION OF THE STEPS TO DETERMINE
WAVE PERIOD: SUMMED SQUARED ERROR EVALUATED AT
20ms OR 200 SAMPLES DELAY

sample space greater each time. This repeats until the last cycle,
shown in figure 6, when the data points for “comparison” are col-
lected from 300 points offset from the points in “reference”. (7)
After the “sum vs delay” list is completed, the local minimum
within the expected range of wave periods is selected, and the
position of that value in the list, interpreted to indicate the period
of the signal, is copied to a Signal Period list, with a time stamp
matching the last data point used in this cycle of comparisons. If
desired, the frequency can be calculated from the period. Each
step in the process as described up to this point is repeated in
order to analyze longer signals piece by piece.

FIGURE 6. DEMONSTRATION OF THE STEPS TO DETERMINE
WAVE PERIOD: SUMMED SQUARED ERROR EVALUATED AT
30ms OR 300 SAMPLES DELAY, WITH MINIMUM AT 20ms OR
200 SAMPLES INDICATED

RESULTS
Each of the methods described was compared by running

them over a well-defined data set and then analyzing their re-
sults to assess performance. This data set is presented in figure
7. The data set used for testing consists of a half-second of 50hz,
a phase-coherent transition to a half-second linear sweep from
50hz to 100hz, and then a half-second of 100hz. The data is
sampled at 1000 samples/second. Only a single frequency com-
ponent is present at any time during this set. A maximum the-
oretical delay, defined here as the time difference between the
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FIGURE 7. PHASE COHERENT FREQUENCY SWEEP FOR EVALUATION

most recent sample and the sample farthest into the past which
was used for calculations, will be calculated. An observed delay
will also be estimated so that each parameter can be compared
between the varying frequency tracking methods.

When the delayed comparison and rolling FFT methods of
primary frequency identification and tracking were applied to the
frequency sweep, the results were as shown in figure 8 for FFT
lengths of 100ms, 200ms, and 400ms, the precision of each pass
is 10hz, 5hz, and 2.5hz, respectively. Each FFT point is gener-
ated using data that spans from the current time through an FFT
length in the past. The “binning” effect, or precision limitations,
are clearly visible in the FFT outputs as steps in the traces. As
the FFT length is increased, the precision and number of bins in
the FFT increase accordingly, and the steps become shorter in
height. However, this increase in FFT length results in an in-
crease in the lag, as demonstrated by the offset of the estimated
frequency vs the target frequency. As the age of the oldest data
in each FFT calculation directly corresponds to the FFT window
length, the maximum theoretical delay resulting from the FFT is
equal tol the FFT length as well. Visual inspection of tracking
performance suggests that the induced lag is around half of each
FFT’s window length on the data set used, where amplitude is
constant and frequency varies at a linear rate.

FIGURE 8. PLOT SHOWING TRACKING OF FFT AND DE-
LAYED COMPARISON METHODS.

Because it was known that the lowest frequency in the
dataset was 50hz, the frequency tracker was tuned beforehand
to extend only slightly below that range. It was configured such
that the oldest data used was equal to the period of the lowest
frequency (20ms, in the case of 50hz), plus a 10ms margin, plus
the length of the samples used for comparison (10ms, in the case
where samples are half the period of the lowest expected fre-
quency). This adds up to a maximum theoretical delay of 40ms.
Inspection of the results suggests a lag of 10ms on the dataset
provided. Precision and accuracy of the system appear to be sig-
nificantly better than the FFT method at any of the settings used,
there is some jitter visible in the results which is not well under-
stood at this time.

CONCLUSION
On signals which are rapidly changing, or otherwise need

to be characterized in a relatively short number of cycles, De-
layed Comparison Error Minimization can provide higher preci-
sion and/or be completed in fewer cycles than an FFT. However,
it is a special purpose tool that requires the signal to fall within
some expected range in order to work correctly. Without narrow
limits on the max and min values to look for, the advantages of
such a technique are diminished.
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