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Introduction
• Sensor networks in structural health monitoring.

• Current systems and their features.

• Problem statement: 

• Rapid large-scale deployment.

• Endurance and system robustness.

• Signal quality and noise mitigation.

• Proposed approach:

• Drone Deployment and Retrieval System 

(DDRS) for rapid structural health monitoring.

• Power management and error handling 

protocols.

• White noise-based transfer function 

compensation method.
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Sensor node breakdown

• Features:
• High-mobility robust sensor node 

• Aerially deployable via DDRS 

• Power management for long deployment periods 

• Nonvolatile memory storage.

• Wireless subsystem for data transmission and IO 

commands.

• Noninvasive docking system utilizing 

electropermanent magnets.

• Accelerometer maximum sampling rate 28 kS/s.

• Sensor frame designed to minimize 

transmissibility loss.
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Sensor node breakdown

• Hardware:
• Processor: ARM Cortex-M7 on Teensy 4.0 

microcontroller.

• SCA3300-d01 MEMS accelerometer.

• EPM V3R5C electropermanent magnet.

• Nonvolatile memory (SD card) for long-term 

storage.

• Lithium polymer battery, voltage regulation and 

monitoring.

• NRF24L01 Nordic Semiconductor wireless 

transceiver. 
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Sensor node breakdown

Developed on Arduino IDE and deployed on an ARM Cortex-M7 processor.

• Algorithm:
• Initialize the magnet signaling start of deployment.

• Acceleration data is periodically collected.

• Data collected in a buffer to enable high sampling rates.

• 74,000 timed samples are collected then transferred onto the memory.

• Code initiates standby mode which turns modules off to conserve power.

• Microcontroller and wireless module remain on for communication.
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UAV deployment and retrieval system

• Delivery and retrieval sequence processor

• Receive user command 

• Issue sequence to electropermanent 

magnets to secure or release package.

• Guiding rails to aid in safe retrieval

• Harness with electropermanent magnet to 

grip the package during flight 

Future work
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EPM#1 EPM#2

Node delivery On Off

Node deployment Off On

Node retrieval On Off

UAV deployment and retrieval system

• Delivery and retrieval sequence processor

• Receive user command 

• Issue sequence to electropermanent 

magnets to secure or release package.

• Guiding rails to aid in safe retrieval

• Harness with electropermanent magnet to 

grip the package during flight 
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Deployment and retrieval

• Sensor node is loaded onto UAV docking 

system

• UAV approach structure 

• Initiate EPM docking sequence

• UAV disengages

• Sensor node is deployed

• UAV approach sensor node after 

deployment period

• Guiding rails secure the node in harness

• Initiate EPM retrieving sequence

• UAV and sensor node retreat from the 

structure 

• Deployment mission complete
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White noise-based filter

• Approach and assumptions:
• Input-output relationship is acquired using a limited 

bandwidth noise signal.

• A Transfer function model of the physical sensor node 

(𝐺p(𝑠)) is created.

• Assumptions made about the plant 𝐺p(𝑠):
• Linearity

• Causality

• Minimal-phase system

• An inversed Transfer function filter 𝐺p−1 𝑠 is created.

• The plant’s influence on the acceleration signal is 

attenuated using 𝐺p−1(𝑠)
• True acceleration obtained given only the output of 𝐺p(𝑠).
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White noise-based filter

• Model Training:
• Using a synthetic white noise:

• Filter transfer function:

• Signal-to-noise ratio:
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𝑥 𝑡 = 𝑎0 σ𝑛=1
450 sin(0.1π𝑛𝑡)

𝐺𝑝−1(𝑠) =
𝑠3 + 786𝑠2 + 1.664𝑒5𝑠 + 2.197𝑒5

1.19𝑠3 + 7.121e2𝑠2 + 1.687𝑒5𝑠 + 3.994𝑒5
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Structural vibration test 1

• Experimental procedure:

• The sensor node and reference accelerometer are 

mounted to structure.

• Source of excitation is an electromagnetic shaker 

secured on top of structure.

• The node and reference accelerometers are 

triggered using a data acquisition system.

• Synthetic white noise signal as excitation signal.

• Sensor node data is examined with and without 

filtering to gauge performance.
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Structural vibration test 2

• Experimental procedure:

• Sensor nodes and reference 

accelerometers are mounted onto 

structure.

• Excitation source is a moving roller.

• Data is collected simultaneously 

from all six sensors.

• Sensor node vs reference frequency 

responses are investigated.
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Structural vibration test 1

Experimental outcomes:
Pre Filter SNR = 6.6373dB 

Post Filter SNR = 7.7415dB 

SNR increase = 1.1042dB = 16.6365%

Findings and limitations:

• Enhancing signal is feasible using a 

pretrained transfer function model.

• Model performance is limited to the 

bandwidth of training

• Phase data is not accounted.
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Structural vibration test 2

Experimental outcomes:

• First three modes of the structure were 

detected.

• Vibration signature of structure is validated via 

the sensor network.

Findings and limitations:

• Low frequency resolution limitations

• Nondeterministic trigger timing

• Sturdy contact with structure is vital to 

vibration measurement 
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https://github.com/ARTS-Laboratory/Drone-
Delivered-Vibration-Sensor

This project is open source and made available at

Future work

• Further enhance the signal-to-noise ratio.

• Decrease trigger timing jitter (Real-time implementation).

• Increase sensor node resolution in low frequency scale (<5 Hz).

• On-edge transfer function filter implementation.

• Develop a fully autonomous UAV delivery system 
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