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Outline
• Methodology:

• Minimal invasiveness sensors

• Long short-term memory networks

• Error compensator model

• Experimentation:

• Bench-top experiment

• Model training procedure

• Performance metrics

• Results and Discussion:

• LSTM compensator performance

• Hardware implementation

• Future work:

• Improve model parameters

• Embedded system implementation 
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Introduction
• Rapid structural health monitoring

• Wireless sensor UAV-deployment 

• Mounting medium limitations

• Problem statement: 

• Transmissibility loss

• Rapid SHM sensing

• Limited-performance electronics

• Proposed approach:

• Non-linear compensation method

• Filter implementation on-the-edge

• Develop a computationaly efficient filter
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Minimal invasiveness sensors
• Sensors that cause no alteration to the 

structure being examined

• Consists of:

• Electropermanent magnet (EPM)

• MEMS accelerometer

• Microcontroller

• Lithium polymer battery 

• Memory storage

• RF wireless communication

• Rapidly deployed for modal-based 

structural health monitoring applications
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Minimal invasiveness sensors
• Sensors are deployed via UAV to remote 

locations

• Using EPMs to secure package to UAV 

and to mount onto metal structures

• Sensors can be rapidly mobilized to 

multiple points on the structure

• Low-cost alternative to permanent 

hardwired systems
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Long short-term memory networks
• Type of recurrent neural networks 

• Using feedback to pass state information to future 

timesteps

• Data enters the network as a singleton vector

• Internal states of the network are updated

• The network then produces an output

• The output is fed into a dense layer to make a prediction

Future work
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Future work

Error compensator model
• LSTMs are ideal for processing temporal data

• Identify high nonlinear anomalies that linear 

functions perform poorly with

• Use an input output relationship between two 

sensors to train

• LSTM models recognize false sensor measure

• Compensators mitigate undesirable sensor noise 

or inaccurate gain measurement

• Large memory footprint and computation load 

compared to linear transfer functions

• Model chosen is a single-layer 50 units with a 

dense final layer
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Bench-top experiment
• Bandwidth: 0-10Hz

• Excitation signal: frequency sweep

• Training datasets focused on the 

lower frequency scale (<5Hz) 

• Model trained best when one 

frequency was presented at a time

• The synthetic waveform is converted 

to an analog signal for excitation
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Bench-top experiment
• Chirp excitation is fed into the electromagnetic 

shaker using an analog output module

• A data acquisition is used to record reference 

acceleration

• A digital trigger is set to synchronize both the 

reference accelerometer and sensor package

• Various dynamic ranges were used to expand 

the training range of the LSTM model
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Model training procedure
• Supervised learning method

• Assumptions:

• Sampling rates were set equal (400 S/s)

• Zero phase between the two sensors 

• Bandwidth of interest to be < 10 Hz

• Model chosen is a single-layer 50-unit LSTM

• Backpropagation is done online every 400 

datapoints (1 second)
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Future work

Performance metrics
• Network performance is examined in time-domain

• SNRdB

• RMSE

• In the frequency domain using a frequency 

response function

• Goal is to compare sensor package measurement 

to the LSTM error-compensator prediction
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LSTM compensator performance
• For testing a chirp excitation in 0-5 Hz is used

• SNRdB enhancement of 9.34%

• RMSE reduction of 19.66%

• Usable bandwidth (< ±2%) is shown to increase 

form 2.78 Hz to 1.34 Hz 

• An overall increase in gain below 0.9 Hz due to 

training bias

12

Future work

sensor

package
LSTM

network

model

training

model

testing



Methodology Experimentation Results and Discussion

Hardware implementation
• Hardware: Raspberry Pi 4 with 2 GB of RAM 

running Ubuntu Mate 20.04

• 32-bit precision 

• Compensator model size is 5.1 MB

• Runtime memory consumption 36.8 MB

• Forward pass average 10 μs per prediction 

• Throughput rate 10 kS/s
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Future work

“Raspberry pi 4 B 4GB: Raspberry Pi,” RS Components . [Online]. Available: https://ae.rsdelivers.com/product/raspberry-pi/raspberry-pi-4-4g-model-b/raspberry-pi-
4-b-4gb/1822096. [Accessed: 27-Feb-2023]. 
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Future work
• Expanding training range to increase usable 

bandwidth

• Improve model performance and memory 

footprint

• Full-scale embedded system implementation



Methodology Experimentation Results and Discussion Future work

15

Open-source UAV-deployable vibration sensor package

https://github.com/ARTS-Laboratory/Drone-
Delivered-Vibration-Sensor

Open-Source hardware Designs
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