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ABSTRACT

For rapid assessment of infrastructure, the use of minimally invasive sensors that can be deployed remotely
using autonomous vehicles is gaining popularity. Such systems are favorable for their ease of deployment and
cost-effectiveness. Utilizing electropermanent magnets or adhesives to mount the sensors temporarily forms a
barrier between the sensor and the structure being examined. This barrier creates undesirable nonlinearities
and transmissibility losses that introduce errors into structural damage detection algorithms. Post-processing
of signals using continuous modeling techniques from classical control theory can be applied to the collected
signals to remove this error. However, post-processing creates additional analysis steps that require the signal
to be taken off device. Processing the data at-the-edge prior to saving it to memory or transmitting it to a base
station enables rapid assessment of infrastructure. With minimal time from signal detection to prognostics, such
systems can be used in damage forecasting and infrastructure failure prevention. This preliminary work aims to
develop a non-linear machine-based compensation technique that is resource and power efficient enough to be
processed on-device. The proposed long short-term memory (LSTM) error-compensating network demonstrated
potential by increasing the SNRdB by 9.3% and improving RMSE by approximately 20% while widening the
usable lower limit of the sensor’s bandwidth from 2.78 to 1.34 Hz. The progress described in this report focuses
on setting the framework for the proposed method and paves the way for a full-scale hardware implementation
in the near future.

Keywords: edge-computing sensor package, UAV-deployable sensor systems, rapid structural health monitoring,
LSTM error compensation network, vibration-sensing node, neural network filter, minimal invasiveness sensor,
standalone sensing systems

1. INTRODUCTION

Wireless sensing networks have proven to be useful tools for structural health monitoring (SHM). Due to their
compact footprint and ease of deployment, such networks are ideal for rapid structural assessment applications.1

Wireless sensing networks have been widely used in the monitoring of civil structures utilizing vibration-based
modal analysis algorithms.2 Of particular interest to this work is the ability to deploy such wireless networks
onto currently operational or historic structures while minimizing environmental or cultural concerns.3

Unmanned aerial vehicles (UAV) are increasingly being used to deploy wireless sensor nodes for SHM appli-
cations. UAV-deployable wireless sensor networks enable the diagnostic process of a structure to be streamlined,
eliminating the need for personnel to be in danger zones of traffic or unstable structures. In addition, these sys-
tems are advantageous in that a small number of sensing nodes can be rapidly mobilized and re-positioned along
a structure,4 for instance, in experimental modal analysis applications of suspended bridges.5 As a result of their
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desirable characteristics, such networks have shown promise as reliable, low-cost alternatives to hard-wired SHM
sensing systems. UAV-deployable wireless sensor nodes and networks have been studied for SHM applications
including [6–9].

A shortcoming of minimally invasive sensors is the mounting medium that maintains contact between the
actual vibration sensor and the structure of interest. Magnets and adhesives have been used to varying degrees
of success,10–12 with transmissibility loss being the main limitation.13,14 When vibration propagates through
the contact medium, some of the signal strength is lost through the magnet/metal interface and the natural
damping of the material. This damping property can have a major negative impact when the vibration signal
is low-energy. Typically, civil infrastructure vibration signatures tend to be at lower frequencies (< 100 Hz)
with acceleration amplitudes in the mg-µg scale, where any transmissibility loss can cause the signal to degrade
below the resolution of the accelerometer on board the sensor package.15 This loss has the greatest impact on
SHM algorithms that use ambient vibration rather than an excitation source.16 Although traditional control
approaches have shown some promise in increasing the signal-to-noise ratio and mitigating transmissibility loss
via filter transfer functions,17,18 the low-energy low-frequency scale remains a difficult range to address because
the sensor’s nonlinearity is prominent within that bandwidth, specifically 0-5 Hz.

To address the transmissibility challenge in UAV-deployed sensor packages, a nonlinear deep-learning ap-
proach based on a long short-term memory (LSTM) developed to run on board a UAV-deployable sensor package
is investigated. The proposed method demonstrated flexibility during model training, and the ability to tackle
complex sensor non-linearity in the low-frequency scale (< 5 Hz), as well as improving signal quality on-edge,
eliminating post-processing steps, all of which are desirable characteristics for rapid SHM applications. The
contributions of this work are on two fronts. First, a report on the process of constructing training and testing
datasets through an experimental approach, training a neural network error-compensating model, and finally
assessing the model’s ability to mitigate transmissibility loss through measurable metrics is reported. Second, an
investigation is conducted into the feasibility of deploying such models on limited-performance computers and
embedded systems utilized in minimal invasiveness sensors for SHM applications.

2. BACKGROUND

This section reports on the required background elements of this paper.

2.1 Open-source UAV-deployable vibration sensor

The authors have developed an open-source UAV-deployable vibration sensor for SHM applications as shown in
Figure 1. The sensor package consists of an electropermanent magnet19 for attaching the sensor package to steel
structures, a capacitive micro-electro-mechanical system (MEMS)-based accelerometer, and a microcontroller to
handle the sensor node’s data acquisition and control.4 A network of these sensor packages has been previously
tested in an experimental modal analysis framework.20

The sensor package utilized in the model training phase of this work consists of the Teensy 4.0 microcontroller
with its ARM Cortex-M7 microprocessor. The package also features an independent power system comprising
of a 2-cell lithium polymer battery and a power regulation and conditioning module. Non-volatile memory is
chosen to store data on board, due to its desired footprint and low power consumption. An SCA-3300-d01 MEMS
accelerometer was embedded into the frame of the EPM V3R5C electropermanent magnet to establish contact
with the structure, a design choice made with minimizing transmissibility loss in mind. An NRF24L01 wireless
module operating on the 2.4 GHz enhanced ShockBurst protocol is also included. This feature enables the sensor
package to receive control commands, communicate with other sensor packages, or send data and status updates
to a base station. The hardware utilizes the Serial Peripheral Interface (SPI) as its wired communication protocol
for its favorable speed. This is required for sensor-memory interface and data transfer processes. With aerial
deployment in mind, a lightweight 3D printed PLA frame was designed to house the delicate electronics and
shield them from the environment during field deployments; yet still be compact and light for UAV delivery.
This sensor package framework and all related designs have been made available as an open-source project.21
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Figure 1. (a) Sensor package deployment under a pedestrian bridge, (b) sensor package and electropermanent magnet
configuration.

Figure 2. Edge implementation of the LSTM compensator network for signal conditioning.

2.2 LONG SHORT-TERM MEMORY NETWORKS

Long short-term memory (LSTM) are a class of deep-learning artificial neural networks for processing time-series
data. The principle of the LSTM network, as it is with any recurrent neural network (RNN), is to use a feedback
connection to pass state information to future timesteps. The state information allows an LSTM model to make
predictions based on all previous data in the time series. Their ability to predict based on temporal patterns
makes them ideal for processing vibration data; as done in this work. In an LSTM model set up for signal
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compensation, a data point enters the model as a singleton vector xt. The LSTM forward pass updates the
internal state vectors ht and ct and returns the updated ht vector. The size of the vectors ht and ct is termed
the units of the model, and it is generally expected that models with more units are capable of processing
more complex signals. As the desired output is a single datapoint, a dense layer takes the output of the LSTM
and produces a singleton output by means of a vector inner product with the weights and bias add, a process
simplified as shown in Figure 2. The seven driving equations of the model are presented in equations 1-7, with
equations 1-6 describing the LSTM forward pass and equation 7 describing the dense layer.22,23 Nonlinearity is
provided by the σ and tanh activation functions.

ft = σ(Wfxt + Ufht−1 + bf ) (1)

it = σ(Wixt + Uiht−1 + bi) (2)

ot = σ(Woxt + Uoht−1 + bo) (3)

c̃t = tanh(Wcxt + Ucht−1 + bc) (4)

ct = ft ◦ ct−1 + it ◦ c̃t (5)

ht = ot ◦ tanh(ct) (6)

yt = WT
d ht + bd (7)

3. METHODOLOGY

This section presents the LSTM compensator model in addition to the sensor package hardware breakdown and
the experimental testing procedure.

3.1 LSTM-BASED COMPENSATOR MODEL

Temporal noise rejection and error-compensating models can take many forms with their similarity being the
recognition of undesirable or false sensor measurements. Undesirable sensor anomalies can be categorized into
two main types: phase error, defined as the time lag between the temporal event occurring and its detection
by the sensor, and magnitude related error, which is classified as the under or overcompensation of the mea-
surement’s gain. Authors of this work have previously investigated a controls-based approach by developing
a continuous transfer function model that corrected the gain-related error using an input-output relationship
between a superior reference accelerometer and a lower performance accelerometer utilized in low-cost sensor
packages.18 This approach has shown potential in enhancing the signal’s quality with some notable limitations.
The model lacked the adequate generalization and was only fitted to one type of excitation signals. The model
was also heavily reliant on the training data as minor changes in phase between the input and output signals
impacted the model performance significantly. This was attributed to high non-linearity that a linear transfer
function could not account for. LSTM-based compensator models tackle such challenges by being nonlinear
systems themselves. This feature enables the network to recognize complex sensor anomalies and reject them
from the measurement. LSTM networks are also more adaptable in terms of architecture and training procedure,
allowing batches of different tests with different excitation signals to be fed into the network for a more gener-
alized model. When compared to transfer function filters, one drawback of LSTM error-compensating models is
their high computational load and large memory footprint. These characteristics make deploying such networks
on low-performance computers a difficult task, requiring design trade-offs be made between performance and
model size for a successful deployment.

3.2 EXPERIMENTAL TRAINING AND VALIDATION

To develop the LSTM compensation model, data across the bandwidth of interest is needed. An experimental
setup is built in order to provide training data to the compensator model. The setup, shown in Figure 5 (a),
includes an electromagnetic shaker as the mechanical excitation source, the sensor package, along with a superior
reference accelerometer as the ground truth measurement. A signal generation and data acquisition system is
also used to generate the excitation signal through an analog output module, start both sensors simultaneously
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using a digital trigger, and finally, an analog input module is included to record the reference accelerometer
signal.

Figure 3. Normalized Chirp excitation signal: (a) time domain, and; (b) frequency domain plots.

The chosen excitation signal was a frequency sweep also known as Chirp excitation. The model performed
better during training when only one frequency was presented at a time, thus the choice of the excitation signal.
The Chirp waveform, shown in Figure 3, was created initially with the mathematical formula

x(t) = sin

(
2π

(
fend − fstart
2(test time)

t2 + fstartt

))
(8)

A voltage signal is then synthesized and fed into the electromagnetic shaker through a power amplifier. The
datasets were of 74000 samples taken at a sampling frequency of 400 S/s. The model was provided with training
frequency sweeps within the range of 0-10 Hz with various dynamic ranges to further enhance its performance.

Figure 4. One of the training datasets in the range of 0 - 10 Hz: (a) time domain, and; (b) frequency domain plots.

A primary investigation during the training dataset construction revealed a large deviation in measurement
within the low-frequency scale (< 5 Hz). The decision was made to expand the training scope to 0-10 Hz because
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the error-compensating model required data from a wide dynamic range to refine its prediction quality. Figure 4
shows that increasing the frequency is directly proportional to increasing the magnitude of actuation, thereby
expanding the dynamic range over which the model can train. Although increasing the bandwidth of training
data resulted in a significant overall improvement, the 0-5 Hz scale remained the focus during the experimental
phase.

Figure 5. Flow chart of (a) experimental setup for developing training data, (b) edge implementation of the LSTM
compensator, and; (c) sensor field deployment on a pedestrian bridge.

To ensure a successful training process where the focus was training on the dynamic range of the signal, an
assumption of zero phase between the two sensors was made. Because the sensor package and data acquisition
were running on different clocks, an impulse was fed through the shaker prior to each test iteration so that the
samples could be precisely aligned after the experiment. The reference accelerometer of choice was a Integrated
Electronics Piezoelectric sensor (IEPE), which performed considerably better than the low-cost Micro Electrome-
chanical Systems (MEMS) accelerometer on board the sensor package. The purpose of this experiment was to
generate a supervised learning dataset to train an error-compensating model that will be deployed onto sensor
packages in the field as shown in Figure 5 (b).

3.3 COMPENSATOR MODEL TRAINING

The training dataset consisted of six frequency sweeps: 0-1, 1-2, 2-3, 3-4, 4-5, and 0-10 Hz, shown in Figure 4.
Each training experiment was 90 s in length and sampled at 400 S/s. By including more data from the 0-5
Hz region, the training dataset emphasized improvement in the lower hertz range. Furthermore, an additional
90 s dataset for testing in the range of 0-5 Hz was used. The testing dataset was run independently, so no data
was shared between training and testing. In other words, while the testing dataset will be similar to a training
frequency sweep, it will not share the specific noise profile that the LSTM model is expected to compensate for.

Model training was performed using the tensorflow.keras module. The chosen model consists of a single
LSTM layer of 50 units. A dense layer converts the 50-element vector output of the LSTM to the output
acceleration prediction. Training utilized the Adam optimizing algorithm with a learning rate of 0.001, β1 of
0.9, β2 of 0.999, and ε of 1e-07. During training, the model was observed to converge to a satisfactory level
in 30 epochs. Preliminary investigations into model architecture revealed that the model size could be reduced
without significant loss in performance, however as the chosen model performed well within the execution time
and memory constraints without the need for additional compromise, minimal model size was not investigated
further in this work.
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Training followed an online scheme, where each frequency sweep dataset was fed in its entirety to the LSTM,
with backpropagation and weight updating performed every 400 samples (equivalent to one second of signal
prediction). To gauge the LSTM compensator network’s performance, equations 9 and 10 were used to calculate
SNRdB and RMSE respectively.

SNRdB = 10 log10

(∑data length
i=1 (signal(i))2∑data length
i=1 (noise(i))2

)
(9)

RMSE =

√∑data length
i=1 (truth(i) − prediction(i))

2

data length
(10)

4. RESULTS AND DISCUSSION

Figure 6. A comparison of performance between the sensor package and the compensator network, showing: (a) time
domain, and; (b) frequency domain plots utilizing the testing dataset.

To examine the compensator network prediction quality, a testing dataset is fed into the model in the bandwidth
of interest (0-10 Hz). The compensator network is shown to trace the reference accelerometer sufficiently well in
the range of 1-10 Hz. An increase in gain in the lower frequency scale (< 0.9 Hz) is shown in Figure 6 (b). This
anomaly can be attributed to the training dataset bias towards the lower bandwidth or the lack of adequate
resolution in the ±3 mg dynamic range leading to a degradation in prediction quality.
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Figure 7. Frequency response function of the sensor package and the compensator network in the range of 0-5 Hz.

Figure 7 reports the expansion in usable bandwidth of the sensor package. A Frequency response function
was used to represent the improvement in the lower frequencies. A 2% error threshold was set, and as illustrated
in Figure 7, the compensator was able to maintain an error lower than the threshold as low as 1.379 Hz in
comparison to the raw sensor that surpassed that threshold at 2.779 Hz, producing a 1.4 Hz expansion in usable
bandwidth. Further improvement is reported in Table 1 where the LSTM compensator achieved a SNRdB of
18.88 dB a 9.34% enhancement. Additionally, a significant improvement in error rejection was demonstrated,
with the network achieving an RMSE of 1.44 × 10−3 g, a 19.66% decrease from the raw sensor signal.

Table 1. A comparison between the raw sensor measurements and the compensated signal using signal-to-noise ratio and
RMSE in the bandwidth of 0-10 Hz.

testing SNRdB RMSE

sensor package 17.26 dB 1.795×10-3

LSTM compensator 18.88 dB 1.442×10-3

% improvement 9.34% 19.66%

To assess the viability of hardware implementation, the trained LSTM model is serialized to open neural
network exchange (ONNX) to then be deployed onto a Raspberry Pi 4 with 2 GB of RAM, running Ubuntu
Mate 20.04. The model was deployed in 32-bit precision, consuming 5.1 MB of memory. In a forward pass over the
testing dataset, the model-averaged 10 µs per prediction, resulting in a forward pass execution frequency of 100
kS/s, well over the 400 S/s threshold set by the SHM sensor sampling rate. The runtime memory consumption
was measured at 36.8 MB as reported by the profiler. All model parameters were well within the thresholds set
by the intended SHM application.

5. CONCLUSION

In applications requiring rapid assessment of structures, high-mobility minimal invasive sensors have demon-
strated great potential. Low cost, small footprint, and ease of deployment distinguish such systems from their
hardwired counterparts. This work presents a framework to further enhance the performance of minimal in-
vasiveness sensors by overcoming the transmissibility loss caused by the mounting medium. To overcome this
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challenge an online LSTM compensator was proposed, with the focus of the study being the signal quality en-
hancement of the accelerometer on board the sensor package, as well as the feasibility of deploying such models
on-edge. Results show an enhancement of 9.3% in SNRdB and an RMSE decrease of 20% in addition to fre-
quency response function analysis that indicated an expansion of 1.4 Hz in the usable sensor bandwidth (<2%
error). These results demonstrate that an LSTM error-compensating network is a viable approach to reduce
signal degradation attributed to transmissibility loss. Future work will concentrate on improving the network
performance in the lower frequencies while also minimizing model size to reduce computational load, thereby
paving the way for an embedded system implementation.

ACKNOWLEDGMENTS

This material is based upon work supported by the Air Force Office of Scientific Research (AFOSR) through
award no. FA9550-21-1-0083. This work is also partly supported by the National Science Foundation Grant
numbers 1937535, 1956071, 2152896, and 2237696.

REFERENCES

[1] Noel, A. B., Abdaoui, A., Elfouly, T., Ahmed, M. H., Badawy, A., and Shehata, M. S., “Structural health
monitoring using wireless sensor networks: A comprehensive survey,” IEEE Communications Surveys &
Tutorials 19(3), 1403–1423 (2017).

[2] Bernardini, L., Benedetti, L., Somaschini, C., Cazzulani, G., and Belloli, M., “SHM campaign on 138 spans
of railway viaducts by means of OMA and wireless sensors network,” in [Lecture Notes in Civil Engineering ],
15–25, Springer International Publishing (aug 2022).
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