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Methodology:
• DROPBEAR experimental testbed
• Long short-term memory model development
• Real-time edge implementation

Experimentation:
• Signal prediction test
• Real-time execution test

Results and discussion:
• LSTM model performance
• Timing accuracy

Future work:
• Prediction accuracy 
• Model throughput rate

Outline
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• High-rate dynamics framework

• Advances enabling high-rate structural 
health monitoring (HR-SHM)

• Long short-term memory (LSTM)

• Data-driven state estimation

Introduction
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• Long short-term memory real-time 
state estimation framework

• Experimental validation method to 
gauge LSTM performance.  

Contributions of this work
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DROPBEAR experimental testbed

• The Dynamic Reproduction of 
Projectiles in Ballistic Environments 
for Advanced Research (DROPBEAR) 
was used to generate the 
experimental data in this work.

• Cantilever beam with controllable 
roller to alter the state.

• Acceleration and roller location are 
recorded.
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Long short-term memory model development

• Recurrent neural network that propagates 
through long- and short-term memory 
forms to make a state prediction.

• LSTM network is trained offline.

• SNRdB and RMSE are used to evaluate 
prediction accuracy.
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Long short-term memory model development

• Grid search of execution time and performance vs. 
number of hidden units.

• Four LSTM architectures with varying number of 
hidden units were explored.
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Long short-term memory model development

• Model was chosen according to execution time 
threshold of 2.5ms. 

• Network shape is 30-30-15-15.

• Output rate of 400 S/s
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Real-time edge implementation

• Deployment of LSTM network to real-time 
operating system results in significant 
model constraints.

• Acceleration data is sampled at 400 S/s.

• LSTM makes a prediction every 2.5 ms.

• Hardware device is a cRIO-9035 running NI-
Linux RT utilizing PREEMPT_RT patch.

• Trained model is deployed on edge device 
and executed in real-time.  
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Signal prediction and timing tests

• The experimental setup consisted of 
two subsystems:
• Data synthesis device reproduces the 

DROPBEAR dataset using a digital to 
analog converter.

• The real-time system digitizes the 
analog voltage and feed the input into 
the LSTM architecture.

• A prediction is made every 2.5 ms.

• State predictions are returned via a 
first-in-first-out buffer to the host PC.

• SNRdB, RMSE, and timing report are 
generated.
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LSTM model performance results
• SNRdB of 43.2 dB 
• RMSE of 12.8 mm
• LSTM traces reference roller location 

closely.

Timing accuracy results:
• Execution-time jitter in observed.
• Timing follows a normal distribution. 
• A result of non-determinism in the Linux 

real-time system.
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• The prediction results demonstrate that a 
data-driven approach using LSTMs has 
potential in HR-SHM applications.

• LSTMs can achieve accurate state estimations 
at moderately consistent latency.



Future work will revolve around:

• Enhance prediction accuracy by 
altering training method.

• Increase model throughput and 
minimize hardware latency.
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Thank you 
Questions?
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https://github.com/ARTS-Laboratory/Paper-Progress-towards-
data-driven-high-rate-structural-state-estimation-on-edge-
computing-devices

The ARTS-Lab 
University of South Carolina
Progress towards data-driven high-rate structural state 
estimation on edge computing devices


