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ABSTRACT

Condition monitoring and fault detection of roller element
bearings is of vital importance to ensuring safe and reliable
operation of rotating machinery systems. Over the past few
years, convolutional neural network (CNN) has been recog-
nized as a useful tool for fault detection of roller element bear-
ings. Unlike the traditional fault diagnosis approaches, CNN
does not require manually extracting the fault-related features
from the raw sensor data and most CNN-based fault diagno-
sis approaches feed the raw or shallowly pre-processed data
as the training/testing inputs to a CNN model, thereby avoid-
ing the need for manual feature extraction. As such, these
approaches can be considered as purely data-driven. How-
ever, it has been proven that some well-established signal
pre-processing techniques such as spectral kurtosis and en-
velope analysis can effectively clean and pre-process a raw
signal to be a better representative of the health condition
of a bearing without losing critical diagnostic information.
This study proposes a new approach to bearing fault diagno-
sis, termed the SK-based multi-channel CNN (SCNN), that
combines signal pre-processing techniques with a modified
1D CNN. The proposed SCNN approach involves two main
steps: in the first step, each raw sensor signal acquired from a
bearing is pre-processed to maximize the signal-to-noise ra-
tio without losing critical diagnostic information carried by
the signal; and in the second step, all pre-processed signals
are fed into a 1D multi-channel CNN that classifies the health
condition of the bearing. An experimental case study was
carried out to evaluate the performance of the proposed ap-
proach. In this case study, a machinery fault simulator was
used to validate the performance of SCNN in the presence of
faults unrelated to bearings such as shaft misalignment and
rotor unbalance.
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1. INTRODUCTION

The monitoring and condition-based maintenance of rotat-
ing machine elements are essential to reducing operation and
maintenance (O&M) costs in industry. In particular, roller el-
ement bearings experience some of the highest failure rates
in both commercial and industrial applications (Liu, Bo, &
Peng, 2013). An early fault in a roller element bearing can
grow over time and eventually lead to an unanticipated ma-
chine failure. Thus, early fault detection and appropriate
maintenance policies can greatly reduce a machine’s O&M
costs while also increasing machine availability through re-
ductions in both planned and unplanned downtime (Tian, Mo-
rillo, Azarian, & Pecht, 2016).

For accurate fault detection of roller element bearings, it
is generally not adequate to directly feed raw sensor sig-
nals to a fault classification algorithm; therefore, signal pre-
processing is often performed to extract the desired diagnos-
tic information from the raw signals. Numerous signal pre-
processing techniques based on spectral kurtosis (SK) (Tian
et al., 2016) and envelope analysis (Abboud, Antoni, Sieg-
Zieba, & Eltabach, 2017) have been introduced and imple-
mented for the detection of faults in roller element bearings.

In the traditional fault diagnosis approaches, after extract-
ing the fault-related features from the raw signals, a machine
learning technique such as support vector machine (SVM)
or artificial neural network (ANN) (Konar & Chattopadhyay,
2011) is often utilized to classify the health condition of an
operating bearing. In recent years, a new branch of machine
learning called deep learning has been recognized as a pow-
erful tool in bearing fault detection. In comparison with the
traditional machine learning approaches, deep learning ap-
proaches are shown to be advantageous in detecting and clas-
sifying incipient bearing faults. The deep learning approaches
do not require manually extracting features from the input
signals. Instead, they directly use multi-channel sensor sig-
nals as the input of a deep learning-based fault clarification
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model and automatically detect and learn the desired diag-
nostic information from the signals (Tian et al., 2016).

Convolutional neural networks (CNNs) have been recently
applied to machinery fault diagnosis. Janssens et al.
(Janssens et al., 2016) built a CNN model with a shallow
structure, in which one convolutional layer with a wide ker-
nel is followed by a fully connected layer, to monitor the
bearing health condition using vibration signals. Zhang et al.
(Zhang, Li, Peng, Chen, & Zhang, 2018) proposed a 5-layer
CNN architecture with wide kernels in the first convolutional
layer and narrow kernels in the following layers to detect
faults in roller element bearings.

Most of the existing deep learning approaches focus on how
to use less training samples to learn more diagnostic infor-
mation so that these deep learning approaches can achieve
higher accuracy in fault detection than the traditional machine
learning approaches (Zhang et al., 2018). However, with re-
cent advances in sensing and data acquisition, collecting large
amounts of training data, often with multiple sensors, is no
longer a challenging problem. It has been shown in a case
study that with high volumes of training data and under con-
trolled conditions of lab testing with low levels of noise, al-
most all of the traditional machine learning and newly intro-
duced deep learning approaches can achieve satisfactory ac-
curacy in bearing fault detection (Zhang et al., 2018).

In order to address the mentioned problems, the authors pro-
pose a new deep learning approach, namely the SK-based
multi-channel CNN (SCNN), that integrates two signal pre-
processing techniques with a modified 1D CNN. The mod-
ified 1D CNN takes multiple channels of sensor data as the
input, which allows considering multiple sensor signals data
in fault detection. Also, signal pre-processing can help max-
imize the signal-to-noise ratio of the input signals. The pro-
posed SCNN approach has the following unique features:

• Considers multiple sources of information (i.e. multiple
sensor signals) as the input. These multiple data streams,
once pre-processed, are then fed into the CNN model si-
multaneously and directly, without any manual extrac-
tion of features.

• Recognizes and separates the bearing fault from other
types of malfunction such as rotor unbalance and shaft
misalignment.

• Filters the input signals using signal pre-processing tech-
niques to reduce the influence of noise and improve the
diagnostic accuracy and robustness.

In this study, multiple accelerometers, AE sensors, and con-
sumer microphones were considered as the sources of diag-
nostic information. An experimental study that simulates the
real world behavior of rotating machinery systems was car-
ried out.

Section 2 provides a brief background review on the CNN
model used in this study. The proposed SCNN approach is
described in Section 3. Section 4 presents and discusses the
validation results. The paper is concluded in Section 5.

2. CNN

As a multi-stage neural network, CNN consists of multiple
convolutional layers, batch normalization (BN) layers, acti-
vation layers, pooling layers, and classification layers (Zhang
et al., 2018). The convolutional layers convolve the inputs
with a set of unknown filters called kernels and then the acti-
vation layers generate the output features from the convoluted
inputs. Each kernel is a matrix with a fixed length and dimen-
sion, whose elements (or hyperparameters) are learned during
the training process. The kernels are used to extract the local
features of the local input region. Since the same kernels are
used to convolve the input units at each layer, the number
of hyperparameters in CNN is often much smaller than that
in ANN and thus CNN reduces the risk of over-fitting in the
training process.

Another layer of CNN is the BN layer which is designed
to reduce the shift of internal covariance and accelerate the
training process of CNN (Zhang et al., 2018). A BN layer
is usually added right after the convolutional layer or fully-
connected layer and before the activation layer. All the afor-
mentioned operations in CNN are of a linear form. In or-
der to enhance the ability of the network in representing the
non-linearity of the input-output relation, it is essential to add
an activation layer after each convolutional layer (Zhang et
al., 2018). In recent years, different activation functions have
been introduced. In this study, we implement the Rectified
Linear Unit (ReLU) activation function since it can accel-
erate the convergence of CNN. Another important layer of
CNN is pooling layer which acts as a down sampling opera-
tion to reduce the number of hyperparameters of the network.
In this study, we use max-pooling which performs the local
max operation over the input features. Finally, the classifi-
cation layers (fully connected layers with softmax activation)
are similar to those used in artificial neural networks.

3. PROPOSED SCNN APPROACH

As shown in Fig. 1, the proposed SCNN approach involves
two main steps. The first step, called signal pre-processing,
filters the raw input signals and converts them into the fre-
quency domain. The second step feeds the pre-processed in-
put signals into CNN. These two steps are explained in more
detail as follows.

In the first step, a frequency/frequency resolution plane is
built based on the fast kurtogram analysis (Antoni & Randall,
2006). Then, the subsignal with the highest kurtosis value
is selected as the filtered signal. This process is essential
for the proposed fault diagnosis approach since the raw in-
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Figure 1. A typical architecture of the proposed SCNN ap-
proach.

put signals usually have high noise-to-signal ratios, which,
in many cases, are impossible to control for. This signal
pre-processing in the proposed SCNN approach helps min-
imize the noise components in the input signals. After that,
the filtered signal is demodulated to remove the carrier fre-
quencies that are unrelated to the bearing fault characteris-
tic frequencies (Tian et al., 2016). Before being fed into the
multi-channel CNN model, the pre-processed time-series sig-
nals are transformed into the frequency domain. This trans-
formation is essential, given that SCNN considers multiple
channels of sensor data as the input to the multi-channel CNN
model. These different sensor signals are time series that
are not perfectly synchronized (i.e. not collected at the ex-
act same time). It means that there is an unknown time delay
(in the order of milliseconds) between the measurement sam-
ple from one channel and that from another channel. Directly

feeding the raw time-series data into CNN may risk the loss
of information due to the inherent non-synchronized charac-
teristic of the time-series data.

In the second step, all the pre-processed signals (also named
as processed channel 1 to channel n) are combined into a sin-
gle set of data and fed into the CNN model. This step is
shown in the bottom block of Fig. 1. In typical CNN models
the kernel size of each convolutional layer is limited to less
than 10. However, it has been shown that for the time-series
data with a high sampling rate such as vibration, a wider ker-
nel in the first convolutional layer can lead to better perfor-
mance (Zhang et al., 2018). This better performance can
be attributed to the fact that the convolution operation with
a wider kernel can cover a longer length of inputs and thus
the effect of noise on the convolution operation can be re-
duced. In this study, we found that the best-performing CNN
model starts with wide kernels (i.e. around 10% of each input
channel size) and long strides at the first stage and transitions
to smaller-size kernels (i.e. down to three) and shorter stride
(i.e. down to the size of 1 unit) at later stages.

4. CASE STUDY

An experimental study was performed to validate the perfor-
mance of the proposed SCNN approach. This study was car-
ried out on a machinery fault simulator to evaluate the per-
formance of the proposed SCNN approach in detecting arti-
ficially seeded bearing faults in the presence of other types
of malfunction including rotor unbalance and shaft misalign-
ment.

4.1. Experimental setup

Two bearings were mounted on a simulator which was driven
by an electric motor via a shaft (see Fig. 2 (a)). Eight sensors
including four vibrations sensors (12 kHz ICP Accelerom-
eter manufactured by PCB Piezotronics Inc), two AE sen-
sors (100-1000 kHZ WSA sensor manufactured by Physical
Acoustics), and two consumer microphones (MAX9814 man-
ufactured by Maxim Integrated) were used to monitor the
health condition of the bearings. The characteristics of the
sensors are shown in table 1. The locations of bearings and
sensors on the simulator are shown in Fig. 2 (b).

Four different types of bearing defect (or fault) were consid-
ered in this experimental study. These include inner race de-
fect, outer race defect, ball defect, and combination of these
defects. The machinery fault simulator ran under nine dif-
ferent rotation speeds from 10 Hz (600 rpm) to 30 Hz (1800
rpm) to cover a wide range of machinery operating condi-
tions. To simulate the true behavior of the machinery systems
in real world applications, two levels of rotor unbalance and
three levels of shaft misalignment were also considered in the
test plan. The parameters and their values used in the design
of experiments are summarized in Table 2. Under each ex-
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Figure 2. Machinery fault simulator: (a) experimental setup, and (b) sensors’ location.

Table 1. Characteristics of sensors.

channel # type max frequency (kHz) sampling rate (kHz)

1 vibration 12 100

2 vibration 12 100

3 AE 900 500

4 microphone 20 100

5 microphone 20 100

6 AE 900 500

7 vibration 12 100

8 vibration 12 100
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perimental condition (i.e., unique combination of the experi-
mental parameters), the experiment was repeated for 10 times
to account for the run-to-run variability of the parameters. In
total, the simulator was tested under 2,340 experimental con-
ditions, resulting in a total of 2,340 measurement samples.

4.2. Implementation of SCNN

First the eight input channels were filtered by fast kurtogram
analysis and then the power spectrum of the enveloped sig-
nals was considered as the input to the multi-channel CNN
model. Each input channel had 3,000 sequenced data points
corresponding to the power spectrum of the enveloped signal
in the range of 0 to 500 Hz. This range was chosen to ensure
that it covers the largest fault characteristic frequency of the
simulator bearing.

The architecture of the multi-channel CNN used in this case
study consists of four convolutional, batch normalization, and
max pooling layers, followed by a fully connected layer and a
softmax layer (see table 3). The kernel sizes for the first and
second convolutional layers are 48 and 9, respectively, and
the kernel sizes for the later two layers are both 3. The ac-
tivation function is ReLU. The multi-channel CNN was im-
plemented using Tensorflow (Abadi et al., 2016) toolbox in
Python 3.6.

To evaluate the performance of the proposed SCNN ap-
proach, two classification scenarios were considered. As
shown in table 4, the first scenario evaluates the performance
of the propossed approach in detecting the fault in the system.
The second scenario aims to test the performance in localiz-
ing the fault (i.e. detecting which bearing is defective). The
number of measurement samples in each class under either
classification scenario is presented in table 4.

4.3. Results

To perform a fair estimation of the accuracy of the proposed
SCNN approach, we left out a set of measurement samples
corresponding to one speed for use as a testing data set. The
remaining samples were first shuffled and then 70% of those
were used for training the CNN model and the rest were used
for validating a trained model. This process was performed
by treating each of the nine speeds as the testing speed. Fig-
ure 3 shows the accuracy of SCNN in fault detection and fault
localization when the testing speed was varied from 10 Hz to
30 Hz. The results suggest that at all speeds, the approach
is able to detect and localize the fault with high accuracy un-
der the noisy environment and in the presence of other types
of malfunction including rotor unbalance and shaft misalign-
ment.

Figure 4 compares the diagnostic accuracy between the pro-
posed SCNN approach and two well-known fault diagnosis
approaches based on SVM and ANN. When implementing

Figure 3. The accuracy of the proposed SCNN approach in
predicting fault detection and localization under the varying
testing speed.
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Figure 4. Accuracy of different methods in fault detection
and localization.

the SVM and ANN-based approaches, we closely followed
the procedure described in (Konar & Chattopadhyay, 2011).
First, the signal was filtered using SK analysis and then the
RMS, crest factor, and kurtosis of the enveloped signals for
all eight channels were considered as the input features to
the SVM and ANN models. The results are also compared
with those produced by the average single-channel CNN and
by the multi-channel CNN without the signal pre-processing
step. For both classification scenarios, SCNN shows higher
accuracy than the other four approaches.

5. CONCLUSION

In this study, a new approach to bearing fault diagnosis,
termed the SK-based multichannel CNN (SCNN), is pro-
posed which combines two signal pre-processing techniques
with a modified 1D CNN that takes sensor signals from mul-
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Table 2. Design of experiments.

parameter value

shaft speed (Hz) 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30

misalignment level (in) 0, 0.01

rotor unbalance (gr) 0, 5

bearing-L condition no defect, inner race defect, outer race defect, ball defect, combination of defects

bearing-R condition no defect, inner race defect, outer race defect, ball defect, combination of defects

trials 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Table 3. The CNN architecture adopted by the proposed SCNN approach.

layer (type) kernel size number of kernels kernel stride output shape (width, depth)

1 convolution 1 48 8 3 151, 8

2 max pooling 1 2 8 2 75, 8

3 convolution 2 9 16 3 20, 16

4 max pooling 2 2 16 2 10, 16

5 convolution 3 3 32 1 8, 32

6 max pooling 3 2 32 2 4, 32

7 convolution 4 3 32 1 2, 32

8 global max pooling 2 32 2 64

9 fully connecter 100 1 1 100

11 softmax 2 1 - 2

Table 4. Classification scenarios.

Class name Number of data

Fault detection Class 1: both bearings are healthy 540

Class 2: at least one bearing is faulty 1800

Fault localization Class 1: both bearings are healthy 540

Class 2: only Bearing R is faulty 360

Class 3: only Bearing L is faulty 360

Class 4: both bearings are faulty 1080
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tiple channels as the input. The signal pre-processing tech-
niques allow maximizing the signal-to-noise ratio of each in-
put signal without losing diagnostic information carried by
the signal, while the multi-channel CNN enables the use of
multiple types of sensor data. An experimental case study
was carried out to examine the performance of SCNN in mon-
itoring the health of multiple bearings in the real world appli-
cations. Compared to the conventional machine learning- and
CNN-based approaches, SCNN is able to detect and localize
the faults with higher accuracy.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., &
Citro, M. (2016). Tensorflow: large-scale machine
learning on heterogeneous distributed systems. arxiv
preprint (2016). arXiv preprint arXiv:1603.04467.

Abboud, D., Antoni, J., Sieg-Zieba, S., & Eltabach, M.
(2017). Envelope analysis of rotating machine vibra-
tions in variable speed conditions: A comprehensive
treatment. Mechanical Systems and Signal Processing,
84, 200–226. doi: 10.1016/j.ymssp.2016.06.033

Antoni, J., & Randall, R. (2006). The spectral kur-
tosis: application to the vibratory surveillance and
diagnostics of rotating machines. Mechanical Sys-
tems and Signal Processing, 20(2), 308–331. doi:
10.1016/j.ymssp.2004.09.002

Janssens, O., Slavkovikj, V., Vervisch, B., Stockman, K.,
Loccufier, M., Verstockt, S., . . . Hoecke, S. V. (2016).
Convolutional neural network based fault detection for
rotating machinery. Journal of Sound and Vibration,
377, 331–345. doi: 10.1016/j.jsv.2016.05.027

Konar, P., & Chattopadhyay, P. (2011). Bearing fault detec-
tion of induction motor using wavelet and support vec-
tor machines (SVMs). Applied Soft Computing, 11(6),
4203–4211. doi: 10.1016/j.asoc.2011.03.014

Liu, X., Bo, L., & Peng, C. (2013). Application of or-
der cyclostationary demodulation to damage detection
in a direct-driven wind turbine bearing. Measure-
ment Science and Technology, 25(2), 025004. doi:
10.1088/0957-0233/25/2/025004

Tian, J., Morillo, C., Azarian, M. H., & Pecht, M.
(2016). Motor bearing fault detection using spec-
tral kurtosis-based feature extraction coupled with k-
nearest neighbor distance analysis. IEEE Transac-
tions on Industrial Electronics, 63(3), 1793–1803. doi:
10.1109/tie.2015.2509913

Zhang, W., Li, C., Peng, G., Chen, Y., & Zhang, Z. (2018).
A deep convolutional neural network with new train-
ing methods for bearing fault diagnosis under noisy
environment and different working load. Mechanical
Systems and Signal Processing, 100, 439–453. doi:
10.1016/j.ymssp.2017.06.022

7


