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ABSTRACT 

Real-time state estimation is critical in rapidly assessing structural health to empower 
real-time feedback mitigation strategies. Of interest to this paper is the state estimation 
of high-rate system dynamics. High-rate systems are defined as dynamic systems ex- 
periencing high-rate (< 100 ms) and high-amplitude (acceleration > 100 gn) events. 
Examples include hypersonic vehicles and active impact mitigation strategies. The ad- 
vanced operation of these mechanisms can only be achieved through control and feed- 
back systems capable of operating in the sub-millisecond range, thus necessitating tight 
performance constraints. Additionally, high-rate system dynamics are highly nonlinear 
and non-stationary, for which traditional real-time inference methods cannot provide ac- 
curate predictions. Topological data analysis (TDA) is gaining popularity for classifying 
complex time series. Its integration with architected machine learning algorithms shows 
promise in advancing the predictive capabilities for high-rate systems. This paper inves- 
tigates the use of TDA features in conducting state estimation. Some TDA features are 
explored on a physical perspective, and their applicability to the high-rate state estima- 
tion problem is assessed. A promising TDA feature is selected, namely the maximum 
persistence of Hð, and applied to laboratory datasets extracted from the dynamic re- 
production of projectiles in ballistic environments for advanced research (DROPBEAR) 
testbed. The task consists of detecting the location of a fast-moving boundary condition 
on a cantilever beam. Results demonstrate that the feature can be used to detect the lo- 
cation of the moving boundary condition online. A discussion on real-time location of a 
fast-moving boundary condition on a cantilever beam and the applicability to high-rate 
systems is provided. 
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INTRODUCTION

High-rate dynamic systems are defined as systems experiencing dynamic events with
amplitudes higher than 100 gn over a duration of less than 100 ms [1]. Examples of
high-rate systems include active blast mitigation systems, advanced weaponry, automo-
tive airbag deployment mechanisms, and hypersonic vehicles [2]. These systems could
benefit from real-time feedback capabilities to preserve structural integrity and reliable
operations, for example enabling adaptive guidance and active mitigation systems. Yet,
achieving real-time state estimation for high-rate dynamic systems remains challenging
because of the important time constraint, often under 1 ms, combined with the large
levels of complexities and uncertainties characterizing their dynamics [3].

Topological Data Analysis (TDA) is a mathematical and computational framework
that applies concepts from algebraic topology to extract information and analyze high di-
mensional and complex datasets [4]. TDA techniques combine statistical, computation,
and topological methods to identify shape-like structures in data that are not apparent
through conventional data analysis methods. It is often used to identify and extract the
underlying data structure and enable dimensionality reduction [5]. TDA is seen as an
improvement with respect to traditional techniques based on algebraic topology, in par-
ticular for nonlinear data sets in noisy environments. TDA has gained significant atten-
tion in experimental and engineering science [6–9], and its integration with architected
machine learning algorithms has shown promise for time series classification [10].

Prior work on real-time state estimation for high-rate systems demonstrated that the
application of algebraic topology concepts, in particular, the embedding theorem [11],
can be promising in accelerating algorithmic capabilities [12, 13]. This is due to captur-
ing the essential dynamics in the form of delay vectors, which are used to feed machine
learning algorithms with minimal information, thus yielding lean and efficient represen-
tations. In this paper, we investigate if TDA features can serve a similar function, i.e.,
used as inputs to an adaptive representation to provide time series forecast capabilities.

Our application problem of interest is the real-time estimation of a moving bound-
ary condition on a cantilever beam. We chose this problem because 1) experimental
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datasets have been produced on a testbed termed dynamic reproduction of projectiles in
ballistic environments for advanced research (DROPBEAR) and have been made widely
available to the field, and 2) DROPBEAR datasets are well suited for validating and
benchmarking performance of high-rate algorithms [14]. First, we examine some of the
available TDA features from a physical perspective to understand how they can relate
to the DROPBEAR problem and discuss why we selected the maimixum persistence of
the 1-dimensional hole feature (known as H1) as our key feature of interest. Second, we
investigate how point clouds from time series data can be effectively constructed to ex-
tract meaningful values for H1 and demonstrate performance on a synthetic dataset and
then on DROPBEAR. Third, conclusions are drawn on the promise of H1 to serve as an
input to a representation built for time series prediction, and a discussion is provided on
adapting TDA techniques to the high-rate problem.

TOPOLOGICAL DATA ANALYSIS

The fundamental theory of TDA is based on algebraic topology, where the topologi-
cal space of a dynamic system is studied using modern mathematical tools, for instance
through the evaluation of a point cloud’s simplicial complexes [15]. A popular technique
to perform TDA is through persistent homology which consists of inspecting the homol-
ogy groups of a sequence of subspaces for a given dataset. These subspaces are defined
by a filtration function such as the Vietoris-Rips complex. As the filtration parameter
varies, the homology groups of the subspaces change, and new topological features may
appear or disappear [16]. Persistent homology tracks these changes by associating each
topological feature with a birth and death time. The persistence of a topological feature
is defined as the difference between its death and birth times [17]. The output of persis-
tent homology is a collection of all topological features that can be represented by birth
and death times in the form of a persistence diagram [18]. These diagrams can be used to
extract several TDA features, including bottleneck distance - a metric that measures the
similarity of two persistence diagrams, the number of connected components and loops
- a metric that provides insight into the overall structure of the data set like the data sets
are fragmented or noisy, and clusterability - an analysis of the distribution of homology
classes in the data [19].

To discuss TDA features on a physical context, we first look at our dynamics of in-
terest. DROPBEAR is a cantilever beam subjected to a fast moving boundary condition
(i.e., a moving cart or “clamp”). Its dynamics is either excited by the moving cart alone,
or also with an impact load using an impact hammer. Thus, the beam is generally un-
dergoing free vibrations, and under that context, we investigate the meaning of TDA
features for single-harmonic time series. Consider the equation of motion of a single-
degree-of-freedom (SDOF) cantilever beam under free vibration without damping:

x(t) = A cos(ωt) = cos(2πft) (1)

where ω is the natural circular frequency in units of radian per second, A is the amplitude,
x(t) is the motion, f is the natural cyclic frequency in Hz, and t is time in seconds. The
first step in conducting TDA is transforming x(t) into a point cloud. This is generally
done based on the embedding theorem [11, 20] by embedding the signal into a delay



Figure 1. The influence of point cloud density on birth time: (a) Vietoris-Rips complex with 10
points and (b) 20 points; (c) persistence diagram for 10 points; and (d) 20 points. The horizontal
dotted line represents infinity.

vector χ(t) = [x(t), x(t − τ), x(t − 2τ), · · · , x(t − (d − 1)τ)] where τ is the time
delay and d the dimension of the embedding. In the case of a single harmonic signal,
prior work has suggested that d = 2 is an optimal embedding dimension [21], thus giving
raise to a 2-dimensional point cloud with its associated persistence diagram containing
information about connected components or zero-dimensional holes (TDA feature H0)
and loops or one-dimensional holes (TDA feature H1).

As an example, Figures 1(a-b) illustrates two point clouds constructed with a dif-
ferent number of points, and Figures 1(c-d) is a plot of their associated persistence dia-
grams. A circle of diameter ε is drawn around each point until the points are connected.
When the points are all connected and form a “hole”, H1 is born. After, ε is increased
until the hole vanishes, with corresponds to H1’s death time. In this noise-free example,
H1 is born when the first H0 dies (the second H0 represents the feature with infinite
persistence). Remark that the birth time of H1 decreases and approaches 0 with an in-
creased sampling rate, and its death time converges to

√
3. This can be observed by

visually comparing H1 between Figures 1(c-d).
In contrast to the first homology group (H1), which relates to the frequency of the

harmonic signal, the topological feature known as the zero-dimensional hole (H0) lacks
physical significance when analyzed in the context of harmonic signals. This is be-
cause for a dense circular point cloud, the death time of the zero-dimensional hole will
converge to zero as the number of points increases, making it a non-informative fea-
ture. Similarly, the number of connected components in the point cloud merely indicates



the sampling rate, and, in the absence of noise, the number of H1 features is always
one. Accordingly, without noise, the bottleneck distance metric relies exclusively on the
maximum persistence of H1 and does not yield any significant insights from a physical
perspective. As a result, we select the maximum persistence H1 as the feature of interest
and study its applicability to our system of interest.

In further studying of H1, one can notice that the reconstructed state space of har-
monic signals for the time delay equal to 0.25/f is always a unit circle and that the
maximum persistence of this circle is equal to

√
3 and is independent of the frequency

of the signal [22]. However, for a time delay below the optimum (0.25/f ), the recon-
structed state space will be an ellipse, and the ratio of its major axis to its minor axis
determines the maximum persistence of H1. More circular ellipse results in higher max-
imum persistence of H1 [23,24]. Hence, under a fixed time delay τ , the frequency of the
harmonic signal will affect the ratio of the major axis to the minor axis, and this, in turn,
will affect the maximum persistence of H1. It follows that, from a physical perspective,
the maximum persistence of H1 can be a useful feature in classifying harmonic signals
in terms of their frequencies.

A key remark is that this interpretation of H1 as a feature for harmonic signals only
applies for stationary systems. Our dynamics of interest is non-stationary, because of the
moving boundary condition. To cope with the problem of non-stationarity, the strategy
will be to apply a sliding window over the dataset to extract local values for H1.

Windowing for Non-Stationary Signal

The embedding theorem states that χ(t) is topologically equivalent to x(t) and thus
can be used to reconstruct x(t) given a function g with x(t) = g(χ(t)), for χ(t) con-
structed with appropriate values of τ and d. Here, we are not necessarily focused on
reconstructing x(t), but on finding TDA features that relate to its dynamics. Yet, it
is important to know that, for a harmonic signal, these values for τ and d are 0.25/f
and d = 2. In coping with a non-stationary signal, we set a maximum allowable
τ = 0.25/fmax with fmax the maximum frequency of the system. The use of a higher
τ would risk of folding the topological space onto itself, and information could be lost.
As briefly introduced above, the time series is inspected using a sliding window of size
1/fmin+τ with fmin the minimum frequency of the system to ensure the point cloud will
form a complete loop. This approach ensures that the window size is sufficiently large
to capture the characteristics of all frequencies in the data. One must also ensure that τ
not be unreasonably small and be selected to allow the phase space to sufficiently unfold
and thus generate topological features.

METHODOLOGY

We study the performance of our windowing method to extract the physically mean-
ingful TDA feature H1 for a non-stationary harmonic excitation. This study is conducted
over two types of datasets: 1) a synthetic noise-free harmonic signal; and 2) experimental
data from DROPBEAR.



Figure 2. Picture of the DROPBEAR testbed. [25]

Case Study 1: Synthetic Harmonic Signal

The signal is taken as

x(t) = cos(2πf(t)t) (2)

with f(t) varying between 1 and 3 Hz. The excitation is plotted in Figure 3(a) (red solid
line). In this excitation, the frequency remains constant at 1 Hz for the first two seconds
(0-2 seconds) before increasing to 3 Hz over the next two seconds (2-4 seconds), after
which it remains at 3 Hz for another 2 seconds. The size of the moving window is
1/fmin + τ = 1 + 0.03 = 1.03 seconds, with data embedded using τ = 0.03 seconds
(0.25/fmax = 1/12 seconds).

Case Study 2: DROPBEAR

The DROPBEAR testbed was designed and developed to validate state estimation
algorithms for high-rate dynamic systems. Briefly, the testbed (Figure 2) consists of a
505 mm cantilever steel beam with a mass attached at its tip using an electromagnet, a
PCB 353B17 accelerometer installed 300 mm away from the clamp, and a sliding cart
that can be moved along the beam with a linear actuator. The electromagnet is used to
simulate a real-time loss in the system’s mass. However, in our study, the mass remains
attached during the movement of the cart. The dataset is taken from the dataset made
available online, corresponding to Dataset-6, Test 9 [26]. The cart is initially located
50 mm from the clamp, moves at 200 mm from the clamp, and comes back its original
position. The temporal location of the cart is plotted in Figure 3(b) (back line). The
system’s dominating frequency varies between 17.7 Hz (at 50 mm) and 31.0 Hz (at 200
mm). Accelerometer data was acquired at 25 kHz. Data embedded using τ = 0.004
seconds (0.25/fmax = 0.008 seconds) and the size of the moving window is was taken
as 1/fmin + τ = 0.06 seconds which was used over the time series data. The window is
slid every 0.001 seconds to reduce computation demands.



Figure 3. (a) Changes of the maximum persistence in a generated synthetic sine signal; and (b)
change of the maximum persistence in the DROPBEAR test.

RESULTS AND DISCUSSION

Results are presented in this section, followed by a discussion on high-rate applica-
bility.

Case Study 1: Synthetic Harmonic Signal

Figure 3(a) shows how the maximum persistence of H1 evolves against the harmonic
frequency (see the solid blue line). It can be observed that the maximum persistence
remains constant at the beginning when the frequency of the signal is constant (at 1 Hz),
and starts increasing when the frequency changes to eventually plateau when the fre-
quency stabilizes again (at 3 Hz). This results demonstrates that H1 directly relates to
the system’s frequency, but that an exact mapping during a change in dynamics could
be more difficult to achieve because of the window size overlapping many different fre-
quencies.



Case Study 2: DROPBEAR

Figure 3(b) plots the time series acceleration signal from the sliding cart without
hammer excitations, and compares it against the maximum persistence of H1. Results
show that here too, the TDA feature relates to the system’s frequency and thus the cart
location. However, H1 appears sensitive to this noisy environment, and also suffers from
the lag provoked by the window size, let along computation time that is out-of-the-scope
of this paper.

Discussion

The objective of this study was to investigate the applicability of TDA features for
conducting real-time state estimation. In this case, the application of interest was the
identification of a moving boundary condition through the assessment of the system’s
frequency, thus reducing the problem of mapping TDA features to the frequency of a
single harmonic. While we demonstrated that the maximum persistence of H1 can be
used for the task, other features could be of interest, including those that can be ex-
tracted through other TDA tools, such as persistent cohomology. A key limitation of the
high-rate problem is the computation speed. In fact, constructing persistence diagrams
is highly time-consuming. In our example on the DROPBEAR data, the construction
of each persistence diagram took 2.877 seconds, far above the sub-millisecond require-
ment. It follows that different methods should be developed to conduct fast TDA feature
extraction, both from a hardware and software perspective. The present technique also
relies on some level of physical knowledge from the system of interest, for instance, a
bound on the dominating frequencies to construct the window size and time delay. In
addition, true high-rate systems, while also typically undergoing free vibrations after
impact, have dynamics that are far more complex, and thus the embedding dimension d
is expected to be larger, giving rise to more TDA features (i.e., holes up to Hd−1). Over-
all, the demonstration produced in this research shows that some TDA features embed
important information about the system’s dynamics and could be leveraged to construct
state estimation and time series forecasting representations.

CONCLUDING REMARKS

This paper presented a preliminary study on the use of TDA features in conducted
state estimation of high-rate system dynamics. The problem of interest was the detection
of non-stationary harmonic frequency. Some TDA features were explored on a physical
perspective, and their applicability to the high-rate state estimation problem was as-
sessed. A promising TDA feature was selected, namely the maximum persistence of H1.
To cope with the system’s non-stationarity, a windowing method was proposed, along
with a technique to embed time series data into a point cloud. The method was applied to
both synthetic data and laboratory data obtained from the dynamic reproduction of pro-
jectiles in ballistic environments for advanced research (DROPBEAR) testbed. Results
show that the TDA feature could map to the system’s state. However, more investiga-
tions and refinements are required to improve performance in a noisy environment (i.e.,
DROPBEAR).



While showing important promise, TDA features are difficult to apply to the high-rate
problem. The computation time required in producing persistence diagrams is the main
bottleneck. Different methods will need to be developed to conduct fast TDA feature
extraction, both on a hardware and software perspective. This is part of our future work.
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