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Objectives

current time
future time

(predict this)
Objective:

Simultaneous forecast +

learn for time series

Performance metrics:

1. Forecast accuracy

2. Re-training time

3. Latency

Contributions:

• Algorithms

• HLS-based implementation

• Overlay-based implementation
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Time Series Forecasting
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• Active Vibration Control
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Applications:  Control of Active Structures

• Deformable Mirrors

Sensors Structure Actuator

Control 
System

* ALPAO Corp.
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Approach

• Signal must be periodic

• Period unknown and may be too long for 
timely relearn

• Nonstationarity
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Approach:  MLP-Based Model
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Test Data
stimulus:

100 Hz+120 Hz+150 Hz

stimulus:

100 Hz+120 Hz

nonstationarity

???
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System Design

           
        

  

z-1 z-1 z-1 z-1 z-1 z-1

t : t-h-1 t-f : t-f-h-1

forecast learn

… … …

rate r to rate rs

word size n

51.2 KHz rs Hz

execution time < 1/rs



• Forecast accuracy:

– 𝑒𝑟𝑟𝑜𝑟 = 𝑜𝑢𝑡𝑝𝑢𝑡[𝑡] − 𝑖𝑛𝑝𝑢𝑡[𝑡 + 𝑓]

– 𝑆𝑁𝑅𝑑𝑏 = log10
𝑟𝑚𝑠 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑖𝑔𝑛𝑎𝑙 2

𝑟𝑚𝑠 𝑒𝑟𝑟𝑜𝑟 2 × 20
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Performance Metrics

• Re-training time:

1. Fit absolute error to 𝑎 − 𝑏𝑒−𝑐𝑡

2. Find "center of gravity" of curve: 
ln

1

2

𝑐

• Parameters:

1. History length (h)

2. Hidden layer size (s)

3. Subsample rate (rs)

4. Data width (n)
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Impact of h, s, rs, and n on Accuracy

Subsampled @ 2500 Hz Subsampled @ 2500 Hz
50 hidden neurons
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Impact of h, s, rs, and n on Retraining Time

Subsampled @ 2500 Hz Subsampled @ 2500 Hz
50 hidden neurons
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Deployment Results



• Vivado HLS 2019.1

• Pipelined loops (hidden layer):

1. Forward pass 1 (forecast)

2. Forward pass 2 (loss calculation)

• Latency = 
ℎ×𝑠

1024
+ 𝐼𝐿 cycles

– h = history length

– s = hidden layer size

• IL = ~2*h (for > 400MHz)

3. Hidden layer weight update

• Latency = 
ℎ×𝑠

1024
+ 𝐼𝐿 cycles

• IL = ~1 - 7 cycles
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HLS Architecture

serial/parallel converter

forward pass 1
ℎ×𝑠

1024
+ 𝐼𝐿 cycles

forward pass 2
ℎ×𝑠

1024
+ 𝐼𝐿 cycles

hidden layer gradient calculation

output neuron weight update

hidden layer weight update
ℎ×𝑠

1024
+ 𝐼𝐿 cycles

complete unroll

complete unroll

complete unroll

Steps:



• Targeted Virtex Ultrascale+ VU9P

– 484 MHz

• Has fixed BRAM/DSP usage for 1024-
banks

– 1 MB allocated weight capacity

– Largest model uses only 15% of 
allocated RAM

• Current design limited by LUT usage
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HLS Implementation

uses 15% 

of allocated 

BRAM

320K 

parameters

20K 

parameters
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Array Processor Memory

• SPAR-2 processor

– 2D array of 1-bit PEs

– Latencies (8-bit):
• add = 16 cycles

• mult = 80 cycles

• n-way reduction = log2 𝑛 × 18 
cycles

– 4x4 block of PEs associated 
with one BRAM

A. Panahi, S. Balsalama, A. T. Ishimwe, J.M. Mbongue, D. Andrews,

"A Customizable Domain-Specific Memory-Centric FPGA Overlay for Machine Learning 

Applications," FPL 2021.
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Array Processor Architecture

• Structure:

– 5x5 blocks/tile

– 5x5 tiles/grid

– 10K PEs

• PEs can exchange with neighbors

• 10 MB capacity, best performance 
when weights < 160 KB

• Custom instructions added for 
backpropagatation

• vs HLS:

– Overcomes HLS's 1024-bank limit

– Limited by multi-cycle adds and 
lower Fmax of 330 MHz
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Performance Results



• Real-time, data driven simultaneous forecasting and learning of time series 
signals

• Developed two implementations of the system

• Current work:

1. Dynamically adjust learning rate to improve re-training time

2. Add support for LSTM forecasters
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Conclusions



Thank you!
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