

ASME IDETC-CIE 2022

International Design Engineering Technical Conferences & Computers and Information in Engineering Conference

CONFERENCE: AUG. 14–17 EXHIBITION: AUG. 15–17 ST. LOUIS UNION STATION HOTEL, ST. LOUIS, MISSOURI

COMPACT TIME DOMAIN NMR DESIGN FOR THE DETERMINATION OF HYDROGEN CONTENT IN GAS TURBINE FUELS

Jacob Martin *

Department of Mech. Eng. Department of Physics and Astronomy University of South Carolina Columbia, South Carolina 29201 Email: jsmartin@email.sc.edu Austin Downey

Department of Mech. Eng. Department of Civil, Const. and Env. University of South Carolina Columbia, South Carolina 29201

Sang Hee Won

Department of Mech. Eng. University of South Carolina Columbia, South Carolina 29201

DETC2022-90023

nical Conferences eering Conference

O

Introduction

- Nuclear magnetic resonance (NMR) is a well-known method for analyzing petroleum fuels
- Hydrogen content is a vital parameter of petroleum distillates
- A compact, low-resolution device could be used for rapid in-situ measurements
- This lab-built TD-NMR device can:
 - Determine hydrogen density for any sample
 - Achieve 0.7% error for hydrogen content in gas turbine fuels

System Design - Overview

- 0.65 T permanent magnet
- PCB mounted signal routing electronics
- LabVIEW programming and GUI
- NI PXI control chassis

Results & Discussion

Magnets with steel yolk & caps

120 mm 10 mm 10 mm 10 mm 19 mm

<u>System Design – Permanent Magnet</u>

- Two dipole cylindrical magnets surrounded by a steel yolk
- Static field strength of 0.645 T (27.5 MHz Larmor frequency)
- Placed inside temperature-controlled container

Introduction

• Finite Element Method Magnetics (FEMM) used for simulation

Bare magnets

.000e-001 : 9.500e-001

500e-001 : 9.000e-001

000e-001: 8.500e-001

5.500e-001 : 7.000e-003 5.000e-001 : 6.500e-003 5.500e-001 : 6.000e-003 5.000e-001 : 5.500e-003

4.500e-001 : 5.000e-001 4.000e-001 : 4.500e-001 3.500e-001 : 4.000e-001 3.500e-001 : 3.500e-001 2.500e-001 : 3.000e-001 2.500e-001 : 2.500e-001 1.500e-001 : 1.500e-001 5.000e-002 : 1.000e-001 5.000e-002 : 5.000e-002

Density Plot: |B|, Tesla

System Design – Signal Routing

- All components mounted on PCBs except for amplifiers
- System is matched to 50 Ω for all ports and cables
- The NMR signal is amplified by 80 dB before being sent to the digitizer

System Design – Control & Data Acquisition

- NI PXI chassis
 - Arbitrary waveform generator
 - Pulse generator
 - \circ 16 to 24-bit digitizer
- LabVIEW GUI displays the current scan and the averaged scans
- Collects decay data over a 5 second period
- 16 scans take 4 minutes

Results & Discussion

- A CMPG sequence with 3965 total pulse echoes (2 shown below) were used to construct T2 decay curves
- An array of pure hydrocarbons (3 shown below) was tested to establish a basis
- Initial signal amplitude is directly proportional to hydrogen density

Results & Discussion

- A linear function was created using the data from the pure hydrocarbons
- This can be used to estimate hydrogen density in any sample
- Hydrogen content (mass %) is the ratio of hydrogen density to mass density
- Hydrogen content was estimated in 6 different gas turbine fuels with a maximum error of 0.7%

fuel	known ¹ H content	measured ¹ H content	% error
JP-8	14.4	14.5	0.7
Jet-A	14.2	14.1	0.7
JP-5	13.4	13.4	0.0
Shell CPK	14.1	14.0	0.7
Shell SPK	15.5	15.6	0.6
Gevo-ATJ	15.3	15.4	0.6

Conclusion

- A simple, compact NMR instrument was developed for the characterization of petroleum distillates
- Demonstrates a high repeatability between tests
- Can accurately determine hydrogen content in jet fuels, which is an important combustion property
- Tests are quick, non-destructive, and require no special sample preparation
- Future work will be dedicated to scaling down the size and performing multi-exponential decay analysis

Compact-NMR

References

Nikolskaya, E., and Hiltunen, Y., 2020. "Time-domain nmr in characterization of liquid fuels: A mini-review". Energy & Fuels, 34(7), pp. 7929–7934.

- P. McIntosh, L., 2013. CPMG. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 386–386.
- Barbosa, L. L., Kock, F. V. C., Silva, R. C., Freitas, J. C. C., Lacerda, V., and Castro, E. V. R., 2013. "Application of low-field nmr for the determination of physical properties of petroleum fractions". Energy & Fuels, 27(2), pp. 673–679.
- Barbosa, L. L., Kock, F. V., Almeida, V. M., Menezes, S. M., and Castro, E. V., 2015. "Low-field nuclear magnetic resonance for petroleum distillate characterization". Fuel Processing Technology, 138, pp. 202–209.
- Barbosa, L. L., Montes, L. F., Kock, F. V., Morgan, V. G., Souza, A., Song, Y.-Q., and Castro, E. R., 2017. "Relative hydrogen index as a fast method for the simultaneous determination of physicochemical properties of petroleum fractions". Fuel, 210, pp. 41–48.
- Montes, L. F., Oliveira, E. C., Ivaro C. Neto, Menezes, S. M., Castro, E. R., and Barbosa, L. L., 2019. "Low-field nmr: A new alternative to determine the aromatic content of petroleum distillates". Fuel, 239, pp. 413–420.
- Santos, P. M., Amais, R. S., Colnago, L. A., Rinnan, ., and Monteiro, M. R., 2015. "Time domain-nmr combined with chemometrics analysis: An alternative tool for monitoring diesel fuel quality". Energy & Fuels, 29(4), pp. 2299–2303.
- da Rocha, G., Colnago, L. A., Moraes, T. B., Zagonel, G. F., de Muniz, G. I. B., Peralta-Zamora, P. G., and Barison, A., 2017. "Determination of biodiesel content in diesel fuelby time-domain nuclear magnetic resonance (td-nmr) spectroscopy". Energy & Fuels, 31(5), pp. 5120–5125.
- Prestes, R. A., Colnago, L. A., Forato, L. A., Vizzotto, L., Novotny, E. H., and Carrilho, E., 2007. "A rapid and automated low resolution nmr method to analyze oil quality in intact oilseeds". Analytica Chimica Acta, 596(2), pp. 325–329.
- Won, S. H., Veloo, P. S., Dooley, S., Santner, J., Haas, F. M., Ju, Y., and Dryer, F. L., 2016. "Predicting the global combustion behaviors of petroleum-derived and alternative jet fuels by simple fuel property measurements". Fuel, 168, pp. 34–46.
- ASTM D7171-20 (2020) Standard Test Method for Hydrogen Content of Middle Distillate Petroleum Products by Low-Resolution Pulsed Nuclear Magnetic Resonance Spectroscopy. American Society for Testing Materials: West Conshohocken, PA, 2017.
- Mondal, S., Kumar, R., Bansal, V., and Patel, M. B., 2015. "1h nmr method for the estimation of hydrogen content for all petroleum products". Journal of Analytical Science and Technology, 6(24).
- Khadim, M. A., Wolny, R. A., Al-Dhuwaihi, A. S., AlHajri, E. A., and Al-Ghamdi, M. A., 2003. "Determination of hydrogen and carbon contents in crude oil and petroleum fractions by nmr spectroscopy". Arabian Journal for Science and Engineering Section B: Engineering, 28(2A), pp. 147–162. PETROLEUM.
- ASTM D4808-17 (2017) Standard Test Methods for Hydrogen Content of Light Distillates, Middle Distillates, Gas Oils, and Residua by Low-Resolution Nuclear Magnetic Resonance Spectroscopy. American Society for Testing Materials: West Conshohocken, PA, 2017.
- ASTM D3701-17 (2017) Standard Test Method for Hydrogen Content of Aviation Turbine Fuels by Low Resolution Nuclear Magnetic Resonance Spectrometry. American Society for Testing Materials: West Conshohocken, PA, 2020.
- Sahebjavaher, R. S., Walus, K., and Stoeber, B., 2010. "Permanent magnet desktop magnetic resonance imaging system with microfabricated multiturn gradient coils for microflow imaging in capillary tubes". Review of Scientific Instruments, 81(2), p. 023706.
- Meeker, D., 2010. "Finite element method magnetics". FEMM, 4(32), p. 162.
- Louis-Joseph, A., and Lesot, P., 2019. "Designing and building a low-cost portable ft-nmr spectrometer in 2019: A modern challenge". Comptes Rendus Chimie, 22(9), pp. 695–711.
- Claridge, T. D., 2016. "Chapter 3 practical aspects of high-resolution nmr". In High-Resolution NMR Techniques in Organic Chemistry (Third Edition), T. D. Claridge, ed., third edition ed. Elsevier, Boston, pp. 61–132.
- Nates, S., Carpenter, D., Dryer, F. L., and Won, S. H. Preferential Vaporization Potential of Jet fuels Evaluated by NMR Spectroscopy.
- Won, S. H., Rock, N., Lim, S. J., Nates, S., Carpenter, D., Emerson, B., Lieuwen, T., Edwards, T., and Dryer, F. L., 2019. "Preferential vaporization impacts on lean blow-out of liquid fueled combustors". Combustion and Flame, 205, pp. 295–304.
 - Carpenter, D., Nates, S., Dryer, F. L., and Won, S. H., 2021. "Evaluating ignition propensity of high cycloparaffinic content alternative jet fuel by a chemical functional group approach". Combustion and Flame, 223, pp. 243–253.

•

•

٠

٠

.

