METHODOLOGY FOR REAL-TIME STATE ESTIMATION AT UNOBSERVED LOCATIONS FOR STRUCTURES EXPERIENCING HIGH-RATE DYNAMICS

Austin Downey, Jonathan Hong, Bryan Joyce, Jacob Dodson, Chao Hu, Simon Laflamme

Table of Contents

- Introduction: Structures Experiencing High-Rate Dynamics
- Research Endeavor 1: Real-Time Training of an Artificial Neural Network
- Research Endeavor 2: Real-Time Model Updating Through Error Minimization
- Summary

JUNGHANS Microtec

JUNGHANS Microtec

Structures Experiencing High-Rate Dynamic Events

Ballistics Packages

Hypersonic Vehicles

Active Blast Mitigation

Fuzes for Hard Targets

The Challenge of Hard Target Fuze Design

- Fuzes are a relatively delicate payload
- Fuzes break in harsh environments
- Too many failure modes for fly-fix-fly approach
- Full scale high-g testing is expensive
- Full scale high-g testing can't uncover all failure modes

Desired Outcomes

- Fuzes have one good outcome:
 - Initiation when intended
- They have two incorrect outcomes:
 - Initiation before or after intended
 - Failure to initiate

Harsh environment

delicate payload

Goal: Real-Time Decision-Making for Structures Experiencing High-Rate Dynamics

Real-time decision making requires the development of two key enabling technologies:

1) low-latency (2 ms) model updating; and

2) near-time prognostics of the system state.

Challenges Related to Computing on the Edge

In the development of solutions for this problem we are operating within the following constraints:

- Computational power at the edge is limited. This includes memory, processors, and available energy.
- The system is too complex to pre-calculate a library of existing fault cases.
- The inputs (forces, location) will never be known.
- Rare and extreme events will happen and must be accounted for.

Team Eglin Public Affairs

tonyrogers.com

Team Eglin Public Affairs

Research Endeavor 1: Real-Time Training of an Artificial Neural Network

Background: Machine Learning, Training Vs. Inference

Inference is where capabilities learned during training are put to work:

- Training: Learning a new capability from existing data.
- Inference: Applying this capability to new data.

nvidia.com/blog/2016/08/22/difference-deep-learning-training-inference-ai/

DROPBEAR (Dynamic Reproduction of Projectiles in Ballistic Environments for Advanced Research)

Real-Time Training of a Feed Forward Neural Network

A feed forward artificial neural network (ANN) was trained in real-time to lean a model of the system that could be used to estimate structural responses at unmeasured locations:

- Trained on time-domain acceleration data.
- 1 hidden layer, 25 nodes, and a sigmoid activation function trained over 50 iterations.
- Computations were executed in double precision floating point.

Experimental Validation

- An automated mass drop on the DROPBEAR was used to simulate a highrate dynamic event:
- The network was trained using acc-1 as the input and acc-4 as the output.
- An average computation time of 8 ms is obtained

Experimental Validation

Benefits of the proposed method

- Relatively low level of latency (8 ms)
- Results demonstrate that an ANN of limited scale can be used as a databased observer to track the system state though the mass drop.
- Successfully estimated the acceleration response at unobserved locations.

Challenges with the proposed method

• The need for labeled training data limits the applications of the proposed method.

There are challenges (large computational cost) with scaling the system as backproagation is $O(n^5)$.

• The method does not generate a physical model of the system (useful for decision making).

Research Endeavor 2: Real-Time Model Updating Through Error Minimization

Real-Time Model Updating Through Error Minimization

A frequency-based model updating technique was developed to update an FEA model of the system.

Experimental

Background: Euler-Bernoulli Beam

Euler–Bernoulli beam theory:

- Is a linear approximation of the response of a beam under load.
- Only applicable to small loads applied in the lateral direction.
- Plane sections remain plane and normal to the axis of the beam.
- Provides better predictions for thin beams than for thick beams (length-to-thickness < 20).

Background: Modal Analysis

Modal analysis is used to find the mode shapes and frequencies of a structure during free vibration.

Starting with the equation of motion:

 $\mathbf{M}\ddot{x} + \mathbf{C}\dot{x} + \mathbf{K}x = 0$

the damping coefficient can be ignored as its effect on the natural frequency is less than 0.0005%, resulting in the expression:

 $\mathbf{M}\ddot{x} + \mathbf{K}x = 0$

assuming a temporal solution:

 $x(t) = \Phi(A_n \cos(\omega_n t) + B_n \sin(\omega_n t))$ yields the following expression:

$$\left(-\mathbf{\Omega}_n^2\mathbf{M}\Phi + \mathbf{K}\Phi_n\right)q_n(t) = 0$$

where $q_n(t)=0$ is a trivial solution, therefore the eigenvalues and eigenvectors are solved for using the general eigenvalue problem formulation:

$$\mathbf{K}\Phi_n = \lambda_n \mathbf{M}\Phi_n$$

where:

$$\lambda_n = \mathbf{\Omega}_n^2$$

and:

$$\omega_n = \sqrt{\lambda_n}$$

FEA Model Validation

A 1-D FEA model of DROPBEAR was developed and validated:

- Interested in frequency response to a change in roller position
- After 100 nodes, the improvement in error is limited.

Frequency vs. Roller Location

Error vs. number of Nodes in FEA Model

DROPBEAR Simulation Results

Used 1000 node FEA as ground truth in simulation.

Experimental Validation

DROPBEAR was configured with a shorter beam (350mm) in order to generate higher frequencies:

- The cart provides the excitation to the beam and is fully automated.
- A sensitive accelerometer allows for testing with low levels of vibrations.

Experimental Results: Algorithm Timing

- Code run in parallel on multi-core processors using floating point precision variables.
- The FFT causes a delay in the estimation of the system.
- The length of the FFT is a function of the dynamics in the system.

Experimental Results: Model Updating

Experimental Results: Impact and Stochastic Testing

Impact Testing

- The frequency-based model updating algorithms can track the system state through an impact.
- This has benefits for system tracking of fuzzes in hard target penetrating systems.

Stochastic Testing

- A random data set was used to investigate the tracking capably of the proposed algorithm.
- Once the delay caused by the FFT is considered, the algorithm is show to accurately track the system state.

Summary

Summary

High-Rate Dynamic Events

- Fuzes are a delicate payload that experience high-rate dynamic events.
- A real-time model updating technique could be used to increase the survivability of fuze components.

Research Endeavor 1: Real-Time Training of an Artificial Neural Network

- A neural network was trained in real-time to lean a model of the system that could be used to estimate structural responses at unmeasured locations.
- Experimental results demonstrated that a model of the system could be trained with a latency of 8 ms.
- The lack of a real physical model limits the applicability of the proposed algorithm.

Research Endeavor 2: Real-Time Model Updating Through Error Minimization

- A model updating technique based on error minimization was proposed and experimentally validated.
- Experimental results demonstrated low-latency model updating of the DROPBEAR.
- The proposed algorithms is capable of tracking the system through impact events.

THANKS!

Sc South Carolina