
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Crack detection in RC structural
components using a collaborative
data fusion approach based on smart
concrete and large-area sensors

Austin  Downey, Antonella  D'Alessandro, Filippo  Ubertini,
Simon  Laflamme

Austin  Downey, Antonella  D'Alessandro, Filippo  Ubertini, Simon  Laflamme,
"Crack detection in RC structural components using a collaborative data
fusion approach based on smart concrete and large-area sensors," Proc.
SPIE 10598, Sensors and Smart Structures Technologies for Civil,
Mechanical, and Aerospace Systems 2018, 105983B (27 March 2018); doi:
10.1117/12.2296695

Event: SPIE Smart Structures and Materials + Nondestructive Evaluation and
Health Monitoring, 2018, Denver, Colorado, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/31/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Crack detection in RC structural components using a
collaborative data fusion approach based on smart concrete

and large-area sensors

Austin Downeya,c, Antonella D’Alessandrob, Filippo Ubertinib, and Simon Laflammec,d

aDepartment of Mechanical Engineering Iowa State University, Ames, IA, USA
bDepartment of Civil and Environmental Engineering, University of Perugia, Perugia, Italy
cDepartment of Civil, Construction, and Environmental Engineering, Iowa State University,

Ames, IA, USA
dDepartment of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA

ABSTRACT

Recent advances in the fields of nanocomposite technologies have enabled the development of highly scalable,
low-cost sensing solution for civil infrastructures. This includes two sensing technologies, recently proposed by
the authors, engineered for their high scalability, low-cost and mechanical simplicity. The first sensor consists
of a smart-cementitious material doped with multi-wall carbon nanotubes, which has been demonstrated to be
suitable for monitoring its own deformations (strain) and damage state (cracks). Integrated to a structure, this
smart cementitious material can be used for detecting damage or strain through the monitoring of its electrical
properties. The second sensing technology consists of a sensing skin developed from a flexible capacitor that
is mounted externally onto the structure. When deployed in a dense sensor network configuration, these large
area sensors are capable of covering large surfaces at low cost and can monitor both strain- and crack-induced
damages. This work first presents a comparison of the capabilities of both technologies for crack detection in a
concrete plate, followed by a fusion of sensor data for increased damage detection performance. Experimental
results are conducted on a 50×50×5 cm3 plate fabricated with smart concrete and equipped with a dense sensor
network of 20 large area sensors. Results show that both novel technologies are capable of increased damage
localization when used concurrently.

Keywords: Carbon nanotubes, Smart cement, Sensor network, Composites damage detection, Structural health
monitoring, Sensors, Smart sensors, Smart Structures.

1. INTRODUCTION

The automated detection of cracks in reinforced concrete (RC) components is an important capability for the
various stakeholders of civil infrastructure, including owners, operators, consultants, and contractors. Various
non-destructive evaluation (NDE) and testing methods exist for crack detection in concrete structures. Cur-
rently, visual inspections are the primary method for evaluating the condition of RC components.1 While visual
inspections of structures can often provide sufficient diagnostic information, they tend to be labor-intensive. In
addition, visual inspections are not suitable for the detection of defects that occur inside a concrete member2 or
in locations inaccessible to inspectors (e.g. nuclear power facilities3). In recent years, the use of visual inspection
has been enhanced through the use of automated camera systems and the development of the associated algo-
rithms for crack detection.4,5 While in many cases these systems provide a marked improvement over traditional
visual inspections, their use requires the setup of sometimes bulky equipment and are less suited to the continu-
ous monitoring of structures. In addition to the visual inspection techniques discussed here, other automated or
semi-automated systems for the detection and localization of cracks in RC components have been studied. These
include ground penetrating radar,6 ultrasonic methods,7,8 x-ray tomography9 and acoustic emission-based9,10

testing methods. These NDE methods, while are well established and understood, can be difficult to deploy for
the continuous monitoring of structures.
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Another approach to the automation of crack detection is the incorporation of smart technologies that leverage
recent advances in the field of nanocomposites. These technologies allow for the development of highly scalable,
low-cost sensing solutions for civil infrastructure. In particular, two smart technologies are of interest for the
purpose of this study: self-sensing cementitious materials and sensing skins. Self-sensing cementitious materials
are formed through the doping of nanocomposite additives, such as multi-wall carbon nanotubes (MWCNTs),
and their conditions can be evaluated through the monitoring of their electrical properties.11 These materials
have been investigated for various strain sensing applications including the dynamic,12,13 static,14 and transient
loading cases.15,16 In addition to their well-documented strain sensitivity, these materials have also been inves-
tigated for their crack detection capability. Teomete has characterized the crack-detection capabilities of cement
matrices doped with carbon fibers17 and steel18 fillers. Lim et al. demonstrated that an MWCNT/cement com-
posite could be embedded into an RC beam and was capable of detecting cracks.19 With the same objective of
detecting and localizing cracks, the authors have shown that a crack in an RC beam could be better localized
through the introduction of a denser contact array.20 Also, a model-assisted approach for detecting and localizing
cracks using a resistor mesh model was developed and demonstrated on an RC beam.21 The use of the resistor
mesh model was then ameliorated through the development of an automated damage detection scheme.22

In addition to the previously discussed self-sensing cementitious materials, sensing skins have seen considerable
research and show great potential over traditional NDE systems for the continuous and automated detection of
cracks in RC structures. Sensing skins are thin electronic sheets that mimic the ability of biological skin to
detect and localize damage over a structure’s global area. Different technologies have been leveraged for the
creation of sensing skins, including resistive strain gauges,23,24 piezoceramic transducers and receivers,25,26

carbon nanotube thin film strain sensors,27 capacitor-based sensors,28 structural carbon nanotube composite
skins,29 and graphitic porous sensor arrays on polyimide.30 When applied onto the surface of RC structures,
sensing skins have demonstrated damage detection and localization capabilities. Hallaji et al. showed that a
thin layer of conductive copper paint, when applied to the surface of an RC beam, could be used to detect
and localize damage through monitoring the skin’s change in electrical resistivity.31 Zhang et al. developed a
sensing skin using conductive silver wires printed on either side of a polyester resin sheet and demonstrated its
applicability for detecting, localizing, and tracking cracks in RC members.29 With a specific focus on the low-
cost monitoring of large-scale structures, the authors have developed a novel large-area electronic sensor termed
the soft elastomeric capacitor (SEC).32 The SEC forms the basis of a previously proposed and experimentally
validated fully-integrated sensing skin.33 The SEC was designed to be inexpensive and benefits from an easily
scalable manufacturing process. The SEC has been studied numerically and experimentally for low-cycle fatigue
counts in steel members34 and for the monitoring of high-cycle fatigue crack growth, intended for the application
of monitoring fatigue cracks in steel bridges.35

The smart technologies discussed here have different strengths and weaknesses. This work first presents a
comparison of the technologies’ capabilities for crack detection in a concrete plate. Subsequently, a method
for the fusion of sensor data between the two systems that allows for increased damage detection performance
is introduced. Experimental results are conducted on a 50 × 50 × 5 cm3 plate fabricated with smart concrete
and equipped with a dense sensor network of 20 large area sensors. Results show that the fusion of data from
both novel sensing technologies increases the damage localization potential when compared to a single sensing
technology (e.g., self-sensing cementitious material or sensing skin).

2. BACKGROUND

This section provides background on each sensing technology. First, the self-sensing cementitious material is
introduced, followed by the SEC-based sensing skin.

2.1 Self-Sensing Cementitious Material

The self-sensing cementitious material used in this work was developed by D’Alessandro et al.36 Only key
concepts related to the material, its fabrication process, and sensing principles are reviewed here for brevity. For
more information, the interested reader is referred to reference.36 The self-sensing cementitious material consists
of a cement matrix doped with MWCNT which provides the cement-based composite with increased conductivity
(reduced resistivity), the capability to detect damage in the form of changing resistance, and piezoresistive strain
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Figure 1. MWCNT doped multifunctional cement-paste showing: (a) a scanning electron microscope image of MWCNT
in the cement-paste matrix; and (b) the biphasic DC measurement approach used for monitoring the plates’ electrical
characteristics.

sensing properties.37 For the purpose of this study, a specimen was developed by adding 1% MWCNT (Arkema
C100), with respect to the mass of cement, to the cementitious material. The MWCNTs embedded in the
cement matrix can be observed in the scanning electron microscope image presented in Figure 1(a). First, the
nanotubes were dispersed into the water through sonication. This process was assisted through the use of a
surfactant solution of a high molecular weight block copolymer with pigment affinic groups. The nano-modified
water suspension was added to the cement and mechanically mixed to form a cement-paste. This paste was then
poured into a 50× 50× 5 cm3 mold with two steel reinforcement grids of 6 × 6 cm2 with 1.2 mm wire stacked
such that their wires and holes aligned. Next, 56 1.2 mm copper contacts were inserted 4 cm into the uncured
smart-cement-paste. However, only 36 of these were utilized during experimental testing. These 36 contacts
were arranged on a grid of 8 × 8 cm2. The unutilized contacts were placed along the perimeter between the
utilized contacts. The specimen cured for 28 days before testing.

The measured electrical response of carbon-doped cementitious materials exhibits a temporal drift, often
expressed as an increase in the materials resistance measurement with time.16,36–39 This polarization effect
found in carbon-doped smart cement pastes can be circumvented through the use of the biphasic measurement
approach that was recently proposed by the authors.38 The biphasic measurement approach allows for the
temporal multi-channel monitoring of self-sensing cementitious material by removing the material’s polarization
effect. The biphasic measurement approach works by constantly charging and discharging the material to be
measured by means of a periodic measure/discharge sensing current in the form of an alternating square wave.
Here, the square wave (20 volts peak-to-peak and 50% duty cycle) is sourced from a signal generator. Each cycle
of the periodic signal consists of two regions, a “measure region” and a “discharge region”, as shown in Figure
1(b). During the discharge region the material depolarization is obtained while a DC voltage measurement is
made during the measure region. The DC voltage measurement is taken after 80% of the measure region is
completed: this is annotated as the sample point in Figure 1(b).

A resistor mesh model for damage detection, localization and quantification of damage in self-sensing ce-
mentitious materials has been proposed by the authors21 along with an automated scheme for the placement
of damage resistors into the resistor mesh model.22 The resistor mesh model, as proposed, consists of a 2-D
mesh of resistors (intended to mimic the electrical response of the smart-cement-paste) and nodes (for voltage
measurements at embedded contacts) and is constructed to mimic the conductive specimen’s geometry. Once
constructed, the resistor mesh model can be solved using nodal analysis. Solving the nodal analysis problem
is easily automated using SPICE,40 an open-source analog electronic circuit simulator. The capability of the
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resistor mesh model to detect and localize damage is based on the assumption that damage manifests itself as
an increase in resistance in the plate. This increase in resistance is due to the property that cracks in the self-
sensing material are considered to cause a reduction in conductivity as they can be considered non-conductive
when opened.12,20,41 Therefore, damage in the plate can be localized through the correct placement of damage
(high value) resistors into the resistor mesh model.

The placement of damage resistors into the resistor mesh model requires the definition of an optimization
objective function that seeks to reduce the error between the plate’s condition and the resistor mesh model. This
error can be expressed in terms of type I (false positive) or type II (false negative) errors.22,42 A simple approach
to this problem would be to reduce the occurrence of type I errors by taking the spatially averaged absolute
difference of the voltage error between the plate’s measured voltage and the model’s estimated voltage for each
node in the system. While computationally simple, this could lead to a solution with a few single points of high
disagreement (i.e. type II error). Therefore, it is important to define a multi-optimization objective function that
is capable of being expressed as a single objective optimization function while still being able to find solutions
that lie close to the Pareto frontier. This study uses a straightforward scalarization approach, borrowed from
the field of robust design,43 to form a single objective optimization function. The selected approach seeks to find
the minimum of a weighted combination of the two objective functions. These are defined as MAE(R) for the
average error at each contact and β(R) for the error value corresponding to the point of maximum disagreement.
A scalarization parameter (α) is selected based on the desired trade-off between the two objectives, allowing for
a single objective problem for optimizing the selection of a resistor set R to be formulated as

minimize

R fit = (1− α)
MAE(R)

MAE′
+ α

β(R)

β′

subject to R = [r1...rm]T ∈ R
0 ≤ α ≤ 1

(1)

where MAE′ and β′ are factors used for normalizing MAE(R) and β(R). These factors are obtained by solving
the resistor mesh model for an initial resistor set that minimizes the current draw error. Once solved, the
normalizing factors can be defined as MAE′ = MAE(Rinitial) and β′ = β(Rinitial).

The automated placement of high-value resistors into the resistor mesh model has been automated using
a sequential Monte Carlo algorithm.22 This algorithm follows three basic steps: 1) an initial constant value
(parent) for each resistor value in the resistor mesh model is obtained; 2) a set of offsprings are randomly
sampled from the parent and the fit for each offspring is calculated; 3) the best performing offspring (i.e. the
offspring with the lowest level of fit) is selected as the new parent and the cycle is repeated for a predefined
number of generations. For a more detailed explanation of the sequential algorithm, including pseudo code and
an investigation of parameters, the interested reader is referred to reference.22

2.2 SEC-Based Sensing Skin

The SEC, as shown in Figure 2, forms the basis of a previously proposed and experimentally validated sensing
skin.33 The SEC is an inexpensive and robust large-area electronic that is easy to fabricate and highly scalable
due to the simplicity of its manufacturing process.32 The SEC sensor is a parallel plate capacitor, as shown in
Figure 2(a), where the dielectric is composed of a styrene-ethylene-butadiene-styrene (SEBS) block co-polymer
matrix filled with titania (TiO2). Titania is used to increase both the durability and permittivity of the dielectric
layer. Conductive plates are fabricated using a conductive paint made from the same SEBS but filled with carbon
black particles. This conductive paint is then painted onto each side of the SEBS matrix. Once the paint has
been allowed to dry, copper contacts are added to the conductors on both the top and bottom plates and a thin
layer of conductive paint is applied over the copper contacts to ensure a good connection between the copper
contacts and the conductors. Being designed as a parallel plate capacitor, the SEC is transduces a change in the
monitored substrates area (i.e. strain) into a change in capacitance (∆C):

∆C = e0er
∆A

∆h
(2)
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Figure 2. The large area electronic, termed the soft elastomeric capacitor (SEC), used for monitoring the surface condition
of the multifunctional cement-paste plate showing: (a) the SEC with its key components labeled and axes annotated; and
(b) four SECs deployed onto the cement-paste plate before the connection of wires.

where e0 = 8.854 pF/m is the vacuum permittivity, er is the polymer’s relative permittivity, A = d ·l is the sensor
area of width d and length l, and h is the thickness of the dielectric as annotated in Figure 2(a). In addition to
its use as a strain transducing sensor,44 the SEC has also been numerically investigated and validated for the
monitoring of fatigue cracks in steel plates. Investigations studied the SEC’s capability to detect and localize
low-cycle fatigue cracks on compact steel specimens.34 Additionally, the SEC has also been investigated for
the monitoring of high-cycle fatigue cracks, representative of cracking commonly encountered in steel bridges.35

When deployed in a network, as shown in Figure 2(b), the SEC is capable of detecting and localizing cracks that
form under individual sensors. While the capability of the SEC to detect cracks in steel has been studied, the
SEC has not been characterized for crack detection in concrete.

3. METHODOLOGY

This section introduces the methodology used for investigating both the self-sensing cementitious material and
the SEC-based sensing skin for crack detection in RC structural members. This includes the test setup, the
selected model arrangement for the resistor mesh model and the proposed data fusion approach.

3.1 Experimental Test Setup

Experimental validation for the crack detection capability of both the self-sensing cementitious material and the
sensing skin were obtained through the testing of the single self-sensing cementitious material plate as shown in
Figures 3 and 4. Tests were carried out at the Laboratory of Structural Dynamics at the University of Perugia.
The electrical schematic of the test setup, as viewed from the back of the plate, is presented in Figure 3, while
the experimental test setup in the lab is shown in Figure 4. The self-sensing cement-paste plate discussed in
section 2.1 was mounted vertically in an extruded aluminum frame. A thin white layer of paint was applied
to the plate to help in detecting the formation of cracks. For the introduction of cracks into the plate, a 3 kg
hammer was mounted on the aluminum frame with a hinge. This hammer was used to provide 100 near identical
(rotated back 20◦ from the vertical) single impacts at the center of the plate. In this presented study, only two
conditions of the plate are considered, healthy (no hammer impacts) and damaged (100 hammer impacts).

For the self-sensing cementitious material, a 20 Vpp square wave with a frequency of 1 Hz and a 50% duty
cycle was sourced from a function generator (DG1022a manufactured by Rigol). This biphasic signal is kept
constant throughout the test (e.g., voltage-controlled test). This voltage was applied to the top right of the
plate when viewed from the back. The resistor mounted in-line with the sourcing current was used to monitor
the plate’s total resistance, including the contact resistance at the current input and output contacts.45 This
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Figure 3. Electrical schematic of the test setup, as viewed from the back, for both the self-sensing cementitious material
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embedded contact and SEC shown in the inserts.
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Figure 5. Resistor mesh model used for damage detection: (a) the layout of the resistor mesh model, as viewed from the
back of the plate, with the high-start value resistors denoted as resistors with a red dashed outline; and (b) the fit of the
resistor mesh model for each generation of the sequential Monte Carlo algorithm.

contact resistance was considered constant throughout the tests and is thus not considered during the placement
of damaged resistors. Voltage samples, used as the inputs to the resistor mesh model, were taken using one of two
analog input modules: either a 24-bit input module (PXIe-4302) or a 16-bit analog input module (PXIe-6361),
both manufactured by National Instruments and mounded in a National Instruments chassis (PXIe-1071). To
help ensure a high-quality contact, wires were soldered to the embedded copper contacts. An example is shown
in the upper insert of Figure 4(b). Voltage drops were measured at 1 sample per second (S/s), whereby this
sampling rate was dictated by the 1 Hz biphasic signal where a DC voltage measurement was made at 80% of
the measure region. For validation purposes, an oscilloscope (Rigol DS-1054) was used to monitor the biphasic
signal during testing. Parameters used for the sequential Monte Carlo algorithm are discussed in section 3.2.

A 4 × 5 network of 20 SECs, as shown in Figure 4(b), was deployed onto the back of the concrete plate. Each
SEC was individually adhered onto the plate using an off-the-shelf two-part epoxy. The SECs were sampled at 22
S/s using a 16-bit custom-built capacitance-to-digital converter. Each converter (four channels per capacitance-
to-digital converter) was held inside a metal project box to limit interference between converters. Capacitance
data was recorded over a USB connection from the capacitance-to-digital converter using the same National
Instruments chassis used for the analog voltage measurements. Active shielding was used in the cables to remove
the cable’s parasitic capacitance. This active shielding necessitated the use of a custom triaxial cable, shown in
Figure 4(b). The converters can measure up to a maximum of 105 pF. Considering that the SECs had a base
capacitance ranging from 100 to 115 pF, a 220 pF ceramic capacitor was added in series to reduce the measured
capacitance of each SEC as shown in the lower insert in Figure 4(b). As this capacitance value is not strain
sensitive, it does not affect the functionality of the SEC.

3.2 Data Fusion

Here, a simple method for data fusion between the SEC-based sensing skin and the resistor mesh model is
proposed. This method is based on the idea that the sequential Monte Carlo algorithm, used for the placement
of resistors into the resistor mesh model, will yield better results if it is provided with a better initial guess.
Previously, the initial guess for the resistor mesh model was based on the assumption that all resistors in the
model started in a healthy state. The values for these healthy resistors were generated through matching the
total current flow through the plate to the model’s total current flow using a simple gradient descent algorithm.
For this study, the initial guess for the sequential Monte Carlo derived damage detection algorithm is obtained
from the sensing skin. However, this initial guess could be obtained from any number of NDE methods. The
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Figure 6. Results for the SEC sensors: (a) expressed as a change in capacitance (∆C, reported in pF) with sensor
debonding being denoted by a red “x”; (b) deployment of the 20 SECs on the back of the cement-paste plate with major
(thick light green lines) and minor (thin dark green lines) cracks highlighted.

resistor mesh model used in this study is presented in Figure 5(a). The initial guess is formed through the
selection of certain resistors in the resistor mesh model that start in a high-start state as these resistors have a
higher probability of being damaged than those in the rest of the plate. These high-start resistors are presented
in Figure 5(a) as resistors with a dashed red outline. Because the SECs are capable of monitoring an area for
crack growth, any resistors in the resistor mesh model that are covered by, or close to, the SEC are used as
high-start values resistors. Additionally, because of the nature of the algorithm, a resistor that starts in a high
resistance state may not finish in a high resistance state. The capability of individual resistors in the resistor
mesh model to adjust their resistance values over generations through the sequential Monte Carlo algorithm adds
a robustness to the algorithm. Once a high resistance value has been set for these resistors in the first generation
of the sequential Monte Carlo algorithm, the algorithm is allowed to run until an end condition has been met
(e.g. a low fit value or a set number of generations).

For this study, each sequential Monte Carlo algorithm uses a population of 100, evaluated over 20,000 gener-
ations with a dynamic range (the amount by which each resistor is allowed to change over a single generation)
of 100 Ω. These parameters were selected through a preliminary investigation by first making educated guesses
about the value for the dynamic range and α. Then, the population number and generational count were set
to a high level to ensure that the algorithm started to converge to a solution. Additionally, these are the same
parameters used in reference,22 allowing for a convenient comparison with previously published work. The con-
vergence of the three sequential Monte Carlo algorithms used in this work can be seen in Figure 5(b). In this
work, the three sequential Monte Carlo algorithms ran are for (i) healthy, (ii) damaged (no data fusion) and
(iii) fusion (damaged with data fusion) resistor mesh models. Figure 5(b) shows that the more accurate initial
guesses, provided by the sensing skin as high-start resistor values, can help yield a more accurate resistor mesh
model fit to the experimental data.
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MI
Figure 7. Spatial damage results, viewed from the back of the plate, as solved by the resistor mesh model: (a) resistance
values for the healthy plate; (b) resistance values for the plate with 100 impacts with the major (thick black lines) and
minor (thin black lines) cracks outlined; and (c) the change in resistance values between the healthy and damaged states.

4. RESULTS

This section first presents a comparison of the technologies’ capabilities for crack detection in the concrete plate,
followed by the crack detection and localization results for the proposed sensor fusion method.

4.1 SEC-Based Sensing Skin

The spatial and temporal (in terms of impacts) results for the SEC-based sensing skin’s crack detection capability
are presented in Figure 6. Figure 6(a) reports the spatial and temporal results for each capacitor in terms of its
change in capacitance, and Figure 6(b) shows the deployment of the 20 SECs on the back of the plate (with the
spatial arrangement corresponding to that of Figure 6(a)). For clarity, an image before the installation of wires
is used to show the locations of cracks in the plate’s damaged state. The major cracks (cracks that are clearly
visible on the front of the plate) are denoted by thick light green lines and minor cracks (cracks only visible on
the back of the plate) by thin dark green lines. As illustrated in Figure 6, the capability of a sensing skin to
detect cracks is a function of the density of the individual sensors. In this study, the SECs only covered about
10% of the total area inside the outer ring of embedded copper contacts. This percentage excludes the white
dielectric that extends past the black conductive plate because it does not contribute to the measurement. This
relatively low density, combined with the sensor layout used in this study, resulted in the majority of cracks
forming around the SEC sensors. In the cases where large cracks did form under SEC sensors, the combination
of the opening of the crack and the impact loading of the hammer caused a debonding between the white paint
and the cement-paste. The SECs detached in such a way that the transducer, epoxy, and paint separated from
the cement-paste in one piece. This debonding allowed the now separated SEC sensor to contract as it was no
longer held in its pretensioned state by the cement-paste substrate. This contraction was recorded as a large
drop in capacitance and is recorded in Figure 6(a) as a red “x” for SEC sensors 5, 8, 9, 11, and 18. As the
debonding present in these sensors is considered to be a product of large cracks opening under these sensors,
these sensors are treated as sensors that detected cracks forming under their respective areas. Therefore, these
sensors are used as inputs to determine the location of high-start resistors for the data fusion method presented
in section 3.2. A selected set of sensors, 2, 12, 13, 15, 16, 19, and 20 did exhibit an increase in capacitance, a
signal that corresponds to the opening of a crack. However, due to uncertainties in relating this change in signal
to a quantifiable crack opening, these sensors are not used as inputs for the data fusion method. Future work
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MI
Figure 8. Spatial damage results, as viewed from the back of the plate, from the fusion of the SEC and resistivity data as
solved by the resistor mesh model: (a) resistance values for the plate with 100 impacts with the major (thick black lines)
and minor (thin black lines) cracks outlined; and (b) the change in resistance values between the healthy and damaged
states.

will be required to quantify the link between a change in an SEC’s capacitance signal and the opening of a crack
in concrete.

4.2 Self-Sensing Cementitious Material

The capability of the self-sensing cementitious material in combination with the sequential Monte Carlo algorithm
to locate cracks present in a concrete plate is illustrated in Figure 7. These results were previously reported by
Downey et al.22 Figure 7(a) presents the spatial resistance (i.e. damage) mapping for the healthy condition of the
cement-paste plate, as viewed from the back, Figure 7(b) presents the spatial resistance mapping for the damage
condition, and Figure 7(c) presents the change in resistance between Figures 7(a) and 7(b). For the selected
damage case, the resistor mesh model is able to identify the locations where the damage is most significant. This
is due to the sequential Monte Carlo algorithm first solving for the damage locations that are the most evident,
therefore making detection of less evident damages more difficult.

4.3 Data Fusion

The fusion of the sensing skin and the resistor mesh model used in conjunction with the self-sensing cementitious
material is expressed in Figure 8. Figure 8(a) is the spatial resistance mapping for the resistor mesh model
that is solved for using the high-start conditions determined by the sensing skin. Figure 8(b) shows the change
in resistance between Figure 8(b) and the healthy state found in Figure 7(a). Generally, the fusion of data
between the sensing skin and the resistor mesh model demonstrates a better capability for detecting more of the
significant damage found in the plate. This figure, along with Figure 5(b), shows that the resistor mesh model
can benefit from the initial guesses provided by the sensing skin.
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5. CONCLUSION

This work introduced and reported on a data fusion method for two recently proposed sensing technologies. The
first technology consists of a smart-cementitious material doped with multi-wall carbon nanotubes used along
a bespoke model assisted damage technique termed the resistor mesh model. The second sensing technology
consists of a sensing skin based on a dense network of novel flexible capacitors that are mounted externally on
the structure. For the purpose of this study, the SECs are mounded on a specimen (a plate measuring 50×50×5
cm3) of self-sensing cementitious material.

This work first showed that the SEC-based sensing skin was capable of detecting cracks that manifested
directly under a sensor, but not around. A solution to this shortcoming is the application of a denser array of
SEC sensors inside the sensing skin, a solution that would be made easier with a fully integrated sensing skin
(e.g., a denser network). In comparison to the sensing skin, the self-sensing cementitious material combined
with the previously developed resistor mesh model can detect damage over the continuous plate. However, this
method could only detect salient damages and required the use of a time-consuming algorithm to detect and
localize damage in the model. Lastly, a method for fusing the two sensing technologies was presented. This data
fusion method consisted of detecting and localizing damage using the sensing skin and then using the location
of this damage to define a better initial guess for the resistor mesh model. Results showed that the fusion of the
data from both novel technologies enhanced the damage localization capability.

Future work on the topic includes: the development of a proper bounding technique for the SEC sensors
onto the cement-based materials; the characterization of crack openings in cement-based materials monitored
by an SEC; the development of better optimization techniques for the resistor mesh model; the quantification of
crack size detection capabilities using the resistor mesh model, and further studying of the proposed data fusion
method with the potential of using other nondestructive techniques to obtain initial guesses.
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