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ABSTRACT
Full Abstract

Damage detection of wind turbine blades is difficult due to their large sizes and complex geometries. Addi-
tionally, economic restraints limit the viability of high-cost monitoring methods. While it is possible to monitor
certain global signatures through modal analysis, obtaining useful measurements over a blade’s surface using
off-the-shelf sensing technologies is difficult and typically not economical. A solution is to deploy dedicated
sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a
novel large-area electronic sensor measuring strain over very large surfaces. The sensing system is analogous to a
biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization
of a hybrid dense sensor network of soft elastomeric capacitors to detect, localize, and quantify damage, and
resistive strain gauges to augment such dense sensor network with high accuracy data at key locations. The
proposed hybrid dense sensor network is installed inside a wind turbine blade model and tested in a wind tunnel
to simulate an operational environment. Damage in the form of changing boundary conditions is introduced into
the monitored section of the blade. Results demonstrate the ability of the hybrid dense sensor network, and
associated algorithms, to detect, localize, and quantify damage.

Keywords: structural health monitoring, capacitive-based sensor, soft elastomeric capacitor, flexible membrane
sensor, sensor network, signal decomposition, damage detection, damage localization.

1. INTRODUCTION

A wind farm’s economic viability typically relies on public subsidies, a predictable energy source, and reliable
technologies.1 The economic rewards of wind energy projects are particularly challenging due to the unpredictable
operation and maintenance (O&M) costs. Reduction in the uncertainty related to the O&M costs of a wind
turbine structural system2 and the enabling of prognostics and health management (PHM)3,4 is of interest to
wind farm owners and operators. A key challenge to the PHM of a wind turbine blade is the implementation of
a structural health monitoring (SHM) system that is cost effective and capable of distinguishing between local
and global faults over the wind turbine’s structural system.5 This task is made more difficult for wind turbine
blades due to their large sizes and complex geometries.6 Implementation of an SHM system for wind turbine
blades is further impeded by the high cost of traditional sensing systems.2,5, 6

Cost effective monitoring solutions for wind turbine blades, in addition to other mesoscale (very large)
structures, need to be capable of monitoring the structure’s global (e.g., changing load paths, loss in global
stiffness) and local (e.g., crack propagation) conditions. However, distinguishing between localized and global
faults on a mesoscale system using state-of-the-art sensing technologies and practices is difficult.7 In the case
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of wind turbine blades, SHM is further complicated by environmental effect (e.g temperature and humidity) on
sensor signals.8

A solution to the global/local condition monitoring problem is the placement of dense sensor networks (DSNs)
over the structure’s global area, or at locations of interest.2 Several innovative techniques for DSNs have emerged
in recent years, including: distributed sensor arrays,9,10 conductive paints,11,12 and sensing skins.13–17 In par-
ticular, Xu et al.9 developed a 36-node sensor array of resistive heating elements built into a flexible polyimide
film to measure flow separation on the leading edge of a delta-wing structure during wind tunnel tests. Tung
et al.14 presented a quantitative study on the relationship between crack growth and thermal variations for
the characterization and future deployment of thin-film full-bridge strain sensors deployed on a polyimide sheet
to form a DSN. Hallaji et al.11 developed a large-area sensing skin consisting of electrically conductive cop-
per paint for damage detection in concrete structures. Damage was detected and localized in the substrate
through monitoring changes in the conductivity of the skin that is applied to the surface of the concrete. Loh et
al.15 introduced a carbon nanotube nanocomposite sensing skin that, when combined with electrical impedance
tomography mapping, enabled two-dimensional damage detection and localization.

Within the same framework of DSNs, the authors have developed a soft elastomeric capacitor (SEC) designed
for monitoring of mesoscale systems. The proposed SEC is a large area electronic that is inexpensive and simple
to fabricate. The SEC is characterized by a parallel plate capacitor and was developed around an inexpensive
nanocomposite based on a styrene-co-ethylene-co-butylene-co-styrene (SEBS) block co-polymer matrix. The
SEBS matrix is filled with titania to form the sensor’s dielectric, while the conductive electrodes consist of a
SEBS matrix filled with carbon black. The SEC is customizable in shape and size,17 and its static18 and dynamic
behaviors5,19 have been characterized, including damage detection applications in wind turbine blades.20 Its
capability to detect fatigue cracks21 and localize them within a DSN configuration22 has been demonstrated.

The SEC offers the unique ability to measure the additive in-plane strain of a surface. Algorithms have
been developed for the decomposition of the additive strain field into linear strain components along two or-
thogonal directions provided that certain boundary conditions are known or can be accurately assumed. Wu et
al.23 presented an algorithm designed to leverage a DSN configuration and a prescribed shape function with
assumed boundary conditions to enable strain field decomposition. The algorithm used a least squares estimator
(LSE) to fit linear strain components using the prescribed shape function, assuming the validity of the classical
Kirchhoff plate theory. Numerical simulations demonstrated that a DSN of SECs could be used to reconstruct
the unidirectional strain maps of a monitored surface. The work was further extended through the introduction
of resistive strain gauges (RSGs) into the DSN to form a hybrid dense sensor network (HDSN) were the RSGs
are used to enforce the algorithms boundary conditions.24 Experimental validation showed that the HDSN was
capable of reconstructing the unidirectional strain maps for a simply supported plate with an HDSN consisting
of 20 SECs and a varying number of RSGs. The problem of RSG sensor location within the HDSN was addressed
by Downey et al.25 A genetic algorithm with a learning gene pool was used to obtain a 34.5% improvement in
the fit of the strain maps when compared with the best fit from a best-of-50 initial guess.

This work presents a damage detection technique that is capable of damage detection and localization for
a damage present along the edge of an HDSN consisting of SECs and RSGs. Here, the assumed boundary
conditions are leveraged for damage detection, where changes in the boundary conditions are used to track
damage in the monitored surface. Unidirectional full-field strain maps are reconstructed from the HDSN sensor
data and the measured error between the reconstructed strain fields and the RSG sensors is used quantify the
reconstructed strain maps. The level of error as a function of changing boundary conditions is monitored, and
damage can be detected by minimizing the measured error. Results from an experimental investigation of an
HDSN mounted inside the model of a wind turbine blade experiencing turbulent airflow in a wind tunnel are
used for validation of the proposed technique. The HDSN consists of an array of 12 SECs and 8 RGSs.Damage
in the form of changing boundary conditions along the edge of the monitored area is introduced into a fiberglass
skin attached to the wind turbine blade.

The contributions of this work are two-fold: 1) demonstrate the ability of the SEC to monitor the model’s
global vibration characteristics in the relativity noisy environment of a wind tunnel; and 2) demonstrate that
unidirectional strain maps extracted from an HDSN can be used for damage localization through the selection
of proper boundary conditions. The paper is organized as follows. First, the background on the SEC sensor in
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introduced, along with the strain decomposition algorithm. Second, the test methodology for the experimental
validation is presented, which includes the algorithm formulation specialized for the model wind turbine blade.
Third, a validation of the HDSNs capability to detect and localize damage through the updating of assumed
boundary condition is presented. Finally, a summary of the results concludes the paper.

2. BACKGROUND

In this section, the background on the SEC sensor, including its electro-mechanical model and the previously
developed extended LSE algorithm, is presented.

2.1 Soft Elastomeric Capacitor

The SEC is a robust and highly elastic large area electronic that transduces a change in a monitored sub-
strate’s geometry (i.e., strain) into a measurable change in capacitance. The sensor’s fabrication,17 static18 and
dynamic5,19 characterization have been previously reported and are summarized here for completeness. The sen-
sor’s dielectric is composed of a styrene-ethylene-butylene-styrene (SEBS) block co-polymer matrix filled with
titania to increase both its durability and permittivity. Additionally, its conductive plates are fabricated from
the same SEBS, but filled with carbon black particles. Components used in the fabrication are readily available
and its fabrication process is relatively simple, making the technology highly scalable.

The SEC measures the additive in-plane strain (x − y plane in Figure 1(a)) of a monitored substrate. The
SEC is pre-stretched and adhered to the substrate using commercial two-part epoxy. The SEC can be modeled
as a non-lossy capacitor, assuming a low sampling rate (< 1 kHz), the with capacitance C given by the parallel
plate capacitor equation,

C = e0er
A

h
(1)

where e0 = 8.854 pF/m is the vacuum permittivity, er is the polymer relative permittivity, A = d · l is the sensor
area of width d and length l, and h is the thickness of the dielectric as annotated in Figure 1(a).

Assuming that the monitored substrate experiences only small strains, an expression relating the sensor’s
change in capacitance to the signal can be expressed as

∆C

C
= λ(εx + εy) (2)

where λ = 1/(1− ν) represents the gauge factor of the sensor, with ν being the sensor material’s Poisson ratio.
For SEBS, ν ≈ 0.49, which yields a gauge factor λ ≈ 2. The electro-mechanical model is derived in reference.5

Equation (2) shows that the signal of the SEC varies as a function of the additive strain εx + εy. The linearity of
the derived electro-mechanical model holds for mechanical responses up to 15 Hz.5 An altered electro-mechanical
model has been derived for modeling mechanical responses up to 40 Hz,19 but is not shown here for brevity. The
SEC’s electro-mechanical model has been validated at numerous occasions for both static17,18,24 and dynamic5,19

strain.

2.2 Strain Decomposition Algorithm

The extended LSE algorithm was designed to decompose the SEC signal’s additive strain measurement, as ex-
pressed in Equation (2), by leveraging an HDSN configuration. The algorithm requires the knowledge of boundary
conditions that can be either assumed23 or enforced through the measurement of strain at key locations.24 The
extended LSE algorithm is presented in reference,24 diagramed in figure 1(b), and summarized in what follows.

The extended LSE algorithm starts by assuming a pth order polynomial displacement shape function. A
polynomial function is selected as the displacement shape function due to its mathematical simplicity and its
ability to develop a wide range of displacement topographies. The shape with a deflection function (w) is
developed for the x-y plane such that
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Figure 1. HDSN technology: (a) annotated SEC sensor with reference axes; and (b) extended LSE algorithm for developing
unidirectional strain maps from an HDSN.

w (x, y) =

p∑
i=1,j=1

bijx
iyj (3)

where bi,j are regression coefficients. Considering an HDSN with m sensors that includes both SEC and RSG
sensor nodes, displacements at the location of sensors are collected in a vector W such that W ∈ Rm. Eq. (3)

becomes W =
[
w1 · · · wk · · · wm

]T
= HB, where subscript k is associated with the k-th sensor. Here,

H contains the sensor locations and B contains the regression coefficients such that B =
[
b1 · · · bf

]T
for f

regression coefficients.

The location matrix H is defined as H = [ΓxHx|ΓyHy] where Hx and Hy account for the SEC’s additive
strain measurements. Γx and Γy are diagonal weight matrices holding the scalar sensor weight values γx,k and
γy,k. For instance, an RSG sensor k orientated so that it measures strain in the x direction will take the weight
values γx,k = 1 and γy,k = 0. Additionally, virtual sensors are used to enforce boundary conditions. Virtual
sensors are treated as RSG sensors with known signals, typically ε = 0, and are added into H at locations where
the boundary condition can be assumed to a high degree of certainty. The matrices are developed from Equation
(3);

Hx = Hy =

 yn1 x1y
n−1
1 · · · xn−1

1 y1 xn1
ynk xky

n−1
k · · · xn−1

k yk xnk
ynm xmy

n−1
m · · · xn−1

m ym xnm

 (4)

Unidirectional strain functions εx and εy oriented along the x and y directions can be obtained from Equation
3 through the enforcement of Kirchhoffs plate theory as;

εx(x, y) = − c
2

∂2w(x, y)

∂x2
= ΓxHxBx (5)

εy(x, y) = − c
2

∂2w(x, y)

∂y2
= ΓyHyBy (6)

where B = [Bx|By]T , and c is the thickness of the plate.

A signal vector S is constructed from the measurements S =
[
s1 · · · sk · · · sm

]T
were sk = εx + εy

for an SEC and sk = εx or εy for a RSG. Thereafter, the regression coefficient matrix B can be estimated using
an LSE:
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(a) (b)

B̂ = (HTH)−1HTS (7)

where the hat denotes an estimation. It results that the estimated strain maps can be reconstructed using

Êx = ΓxHxB̂x Êy = ΓyHyB̂y (8)

where Êx and Êy are vectors containing the estimated strain in the x and y directions for sensors transducing
εx(x, y) and εy(x, y), respectively.

An HDSN without a sufficient number of enforced boundary conditions will result in H being multi-collinear
because Hx and Hy share multiple columns, resulting in HTH being non-invertible. This can be avoided by
integrating a sufficient number of RSGs into the HDSN.

3. METHODOLOGY

Figure 2. Experimental setup: (a) wind turbine blade mounted in wind tunnel; and (b) buffeting vanes used for generating
turbulent airflow.

An HDSN consisting of 12 SECs and 8 RSGs was deployed onto the inside surface of a fiberglass substrate,
which was installed onto a wind turbine blade as shown in figure 2(a). The experimental setup consisted of a
1.3-meter blade modeled after the center portion of a full-scale wind turbine blade. The model (figure 2(a))
consisted of an aluminum spar fixed at the root (blade root mounted up) and 10 wood/plastic airfoil sections
mounted onto it.26 The blade root was restrained in all 6 degrees-of-freedom, with root forces monitored via
force transducers. Two Transducer Techniques model MDB-50 were used to monitor lift and moment, and an
MDB-25 was used to measure drag forces at the root. Lastly, the model was instrumented with 7 accelerometers,
PCB model # 352C65, mounted inside the model.

Experimental validation of the vertically mounted model was carried out in the Aerodynamic and Atmospheric
Boundary Layer (AABL) wind and gust tunnel located in the Wind Simulation and Testing Laboratory (WiST
Lab) in the Department of Aerospace Engineering at Iowa State University. The wind tunnel has an aerodynamic
test section of 2.44 m width by 1.83 m height, an atmospheric boundary layer test section of 2.44 m width by
2.21 m height and a design maximum wind speed of 53 m/s in the aerodynamic test section. Air turbulence
was induced into the tunnel by forcing the two parallel buffeting vanes shown in figure 2(b) to oscillate at a
characteristic frequency of 3.1 Hz. This turbulence created a sinusoidal buffeting load (lift and moment) along
the span of the blade.
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Figure 3. Experimental HDSN configuration: (a) monitored fiberglass substrate with labeled bolts along the leading edge;
(b) schematic with labeled SECs and RSGs; virtual sensors in the x and y directions are denoted by blue circles and green
diamonds, respectively; and (c) picture of the HDSN (RSGs A and D not shown, as they were added after the substrate
was installed on the model), interior surface view.

The experimental HDSN tested here consisted of 12 3× 3 cm2 SECs and 8 unidirectional RSGs, TML model
# FCA-2, mounted on a 0.8 mm-thick fiberglass substrate (figure 3(a)) measuring approximately 270 x 220 mm2.
The fiberglass composite skin was attached to the second and third airfoil sections counted from the blade root.
The majority of the bending induced strain developed in the gap between the sections. The deployed HDSN
is presented in figure 3(b). Twenty-four bolts were used to fasten the substrate onto the model. Boundary
conditions for the bolts were assumed such that εx = 0 at each bolt location along the top and bottom of the
plate, and εy = 0 at each bolt location along the vertical edges of the plate (see figure 3(b)). Figure 3(c) is a
picture of the fiberglass panel that was attached to the blade model with 12 SECs and 4 of the 8 RSGs mounted.
The remaining 4 RSGs were installed after the substrate was attached to the model. The SEC data acquisition
consisted of three custom-built microcontrollers, Atmel P328, each with a 24 bit 4 channel capacitance to digital
(CDC) converter sampled at 22 Samples/second (S/s). RSG measurements were obtained using a National
Instruments 24-bit 350 Ω quarter-bridge modules (NI-9236) and sampled at 2000 S/s.

Damage was introduced in the form of changing boundary conditions through removing the bolts on the
leading edge (facing into the wind flow) of the blade. The removed bolts are annotated in figure 3(a) and their
order of removal for 8 different damage cases are listed in Table 1. Unidirectional strain mats are realized for each
damage case. Experimental data sets were acquired following the introduction of each damage case, therefore,
including the healthy case nine total data sets were acquired.

Table 1. Boundary conditions (bolts) removed for each damage case.

damage case (no.)
1 2 3 4 5 6 7 8

bolts removed 5 4,5 3,4,5 3,4,5,6 3,4,5,6,7 2,3,4,5,6 1,3,4,5,6,7 1,3,4,5,6,7,8

Damage detection and localization through the updating of assumed boundary conditions and monitoring
of the error is investigated using damage case 2. Damage case 2 consists of two missing bolts (bolts 4 and 5).
We leverage the concept of updating the assumed boundary conditions through taking various combinations of
two missing bolts for damage detection and localization. The five possible damage locations investigated are the
removal of boundary conditions (bolts) 2 & 3, 3 & 4, 4 & 5, 5 & 6 and 6 & 7. Assumptions containing bolts
1 and 8 were found to be unacceptable due to the complex interaction of plate’s edge effects and the assumed
shape function, and are therefore excluded from this introductory work. Damage case 2 was selected because it
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provided large enough damage to be trackable with the deployed HDSN, while still providing a relatively large
search space of five possible damage locations.

Signal interference between the SEC data acquisition system required that only one microcontroller be op-
erating at any given time. Therefore, experimental data for each test condition (healthy and 8 damage cases)
was obtained over 3 repeated test runs, each test recording 4 SECs and all eight RSGs. Final experimental data
were compiled using the RSG signal as a reference to align the SEC signals for each test case. To reduce sensor
noise in the SEC and provide a common time stamp for data analysis, the sensor signals were filtered as follows.
A low pass Weibull filter with a cutoff frequency of 5 Hz was applied to remove any high-frequency noise. Next,
a principal component analysis (PCA) decomposition was applied on the SEC signals, retaining the first four
eigenvalues. Lastly, the SEC and RSG signals were resampled to 100 Hz using a spline interpolation.

4. VALIDATION

Figure 4. SEC and RSG signals: frequency domain showing the first and second harmonic; (insert) time series data for
the SEC and RSG signals.

The capability of the SEC to track the buffeting-induced strain in the wind turbine blade is shown in figure 4.
It can be observed that The SEC captures the blade’s fundamental frequency at 3.1 Hz and tracks an additional
harmonic at 6.2 Hz. Data presented was extracted from SEC #5 and RSG B. A difference of 0.05 Hz is present
between the second harmonic detected by the SEC and that of the RSG. A third harmonic is present in the
RSG data at 9.25 Hz, but this peak is hardly distinguishable from the SEC’s level noise. Given the currents
DAQ’s low sampling rate of 22Hz, no data past 11Hz is available in the frequency range. Time series data for
the SEC and the validating RSG is presented in figure 4(insert). An approximatively sinusoidal shape can be
seen in the RSG and SEC data, albeit the SEC was hampered by a much slower sampling rate. Individual SEC
strain samples are shown as black dots, and thea filtered SEC signal is presented as the solid blue line. Overall,
the SEC exhibit an excellent capability for tracking the blade’s response and frequency domain signals while
operating in the relatively noisy environment of a wind tunnel.
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Figure 5. Reconstructed strain maps: (a) healthy condition εx; (b) εy; (c) damage case 4 εx; (d) εy; (e) damage case 8
εx; (f) εy.
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The performance of the HDSN as a sensing skin capable of developing full field strain maps in addition to
detecting and localizing damage is experimentally validated. Figure 5 shows the decomposed strain maps εx and
εy for the healthy and damage cases 4 and 8. Strain maps are computed from data taken when εy at RSG B
was at the maximum compressive strain (i.e. when the tip of the model is at its maximum displacement). The
reconstructed strain maps for the undamaged test case are presented in figure 5(a-b). The enforced boundary
conditions ensure that εy = 0 along the leading and trailing edges of the plate. As expected, when bolts are
removed for damage cases 4 and 8 and the boundary conditions are updated to reflect the damage, a compressive
strain energy moves into the leading edge of the plate. For damage case 8, all leading edge bolts removed, and
the majority of the strain energy is present in the middle and along the leading edge of the fiberglass skin that
connects the two separate airfoil sections. Additionally, results demonstrates that the HDSN can reconstruct
relatively complex strain fields, such as that caused by the torsional motion of the blade model, represented by
the different parts of the skin being under tension and compression. The blades torsion detected by the strain
maps was corroborated through accelerometers, force transducers, and video captured during testing.

Figure 6. Improvement in strain map reconstruction obtained through the updated of boundary conditions to match the
monitored substrate’s condition.

Results from updating the enforced boundary conditions to match the damage state of the system is presented
in figure 6. Here the error between the estimated strain maps and the experimental RSG data is measured as
a mean fitting error across all 8 RSGs for the two orthogonal strain map reconstruction cases. The mean
error is obtained by averaging the error throughout six full vibration cycles of the blade model. A comparison
in the measured error between uncorrected strain maps that maintain a consistent set of boundary conditions
throughout all the damage cases and the corrected strain maps that used an update on the boundary conditions to
match each damage case is presented in figure 6. Results demonstrate that updating the boundary conditions to
match the damage state provides a consistently better fit than that obtained through the use of static boundary
conditions. In the case of damage case 8, a 44.5 % improvement in the measured error is obtained through
updating the boundary conditions to match the damage cases. As expected, results demonstrate that updating
the boundary conditions to match the damage case results in higher accuracy strain maps.

Experimental data from damage case 2 is used to validate damage detection and localization through lever-
aging the assumptions on the plate’s boundary conditions. Results presented in figure 7 exhibits the fitting error
as a function of the boundary conditions that are removed. Boundary conditions were removed in pairs to match
the known damage size in damage case 2 (bolts 4 and 5 removed). The fitting error for the removal of bolts 4
and 5 results in a lower fitting error, therefore identifying damage case 2 correctly.

5. CONCLUSION

This paper presented the experimental validation for a novel hybrid dense sensor network (HDSN) for monitoring
strain on a wind turbine blade. The HDSN was tested on a scale model of a wind turbine blade in a wind tunnel
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Figure 7. Damage case 2: damage localized through updating the assumed boundary conditions of the plate.

to simulate an operational environment. The HDSN consisted of a large area electronic sensor based on a 
soft elastomeric capacitor (SEC) combined with resistive strain gauges (RSGs). An extended least squares 
estimator (LSE)-based algorithm was used to fuse the SEC’s additive strain measurements, the RSG’s linear 
strain measurements, and the assumed boundary conditions into unidirectional strain maps. The algorithm 
assumed a shape function, enforced boundary conditions with the RSG measurements, and used virtual sensors. 
The regression coefficients were computed using an LSE and used for reconstructing unidirectional strain maps.

Experimental results demonstrated the ability to the HDSN to detect changes in strain maps (i.e. damage) 
resulting from damage introduced as a change in the monitored substrates boundary conditions. Damage local-
ization is achieved through the updating of the assumed boundary conditions and monitoring the error between 
reconstructed strain maps and RSG signals. Results showed the promise of the HDSN technology for damage 
detection along the edge of a monitored area. The HDSN technology and associated damage detection tech-
niques could be used to monitor very large structural components including wind turbine blades. Also, given 
the demonstrated ability of the HDSN at measuring strain maps, the technology offers potential for updating 
computational models in real-time. These high fidelity models could then be used for the effective structural 
health monitoring of structural components or research and development activities. Future work will require an 
in-depth investigation of the proposed method, including the use of larger HDSN and various types of assumed 
boundary conditions.
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