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lowa, a center for wind

US wind energy share of electricity generation during 2015 iowa.gov
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Towards 50% wind energy

Y recroscoceronarvn | MidAmerican Energy To Invest

The Mact ; : $3.6 Billion In 2 GW Wind
The Most Impressive State Project

for Clean Energy
Ils lnw:.fhally! Q 9 ? . o . .

The project is a big step towards the

Wind XI will add 1000 2-megawatt companys goal of 100% renewable energy
machines. slate.com for all its lowa customers.
cleantechnica.com
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Taller towers

lowa has the tallest land-based (US) wind lowa State University is working on the
turbine (115 meter hub height) Donnelle development of hexagon concrete towers.
Eller news.iastate.edu
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e
Bigger blades

HOME ONSHORE WIND > ENERCON ADDS LOW-WIND TURBINES

Enercon adds low-wind turbines

18/11/2015

Enercon has introduced low-wind speed versions to its 4MW and 2MW onshore wind turbine
platform._

Enercon 73 meter blade \Wind Energy
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Hybrid Dense Sensor Networks (HDSN)

@ Hybrid Dense Sensor Networks (HDSN)
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Hybrid Dense Sensor Networks (HDSN) gt BSYe] [Tyately]

Structural health monitoring of wind turbine blades

Utilizing large area electronics for global coverage

SHM Problem Technology

Wind Turbine sensi i Characterization
Blades ' ) : -

Applications

Dense Sensor
Network
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Hybrid Dense Sensor Networks (HDSN) EESIial=EE eIy Il @E ok el ¢e1d

Soft Elastomeric Capacitor (SEC)

SECs of varying size compared to a resistive strain gauge Highly elastic sensing membrane.
(RSG).
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Hybrid Dense Sensor Networks (HDSN) SIS ER TN IeNeE eI 2elg
SEC model

Parallel plate capacitor

AA
AC = ErEOT (1)

[

I , /{:_‘.

dielectric

€r is the relative static permittivity and ¢ is the

dielectric constant. Using hooks law; &, —di

AC - [
— = e e 2 T conducting
C ( X + y) ( ) ‘{"1‘-/ l plates
where ¢, is the strain in the x direction, ¢, is the SEC sensor

strain in the y direction and ) is the sec's gauge
factor = 2 for mechanical excitation under < 15 hz
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Hybrid Dense Sensor Networks (HDSN) Implementation

Fully integrated SEC based sensing skins for mesosystem
monitoring

low-resolution

DSN/HDSN  wind turbine
blade

flexible substrate

fz dielectric data bus

X “.._ conductive

late f
P control/wireless

contacts L
transmission node

wires embedded capacitance-to-digital high-resolution
in flexible substrate converter DSN/HDSN
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Hybrid Dense Sensor Networks (HDSN) Implementation

Implementation

© Deployable inside wind
turbine blades.

@ Retrofit or OEM.
© Useful for other large

structures, e.g. buildings,
bridges, aircraft.

Inside a 45 meter GE blade Austin Downey
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Hybrid Dense Sensor Networks (H ) Implementation

Damage cases

Typical damage cases: 1) through crack; 2-3) edge split; 4) impact. Austin Downey
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Hybrid Dense Sensor Networks (HDSN) Fatigue crack detection

Dense sensor network for fatigue crack detection

to DAQ

P —

reference:
1036 pixels
61.9 mm

width:
0.711 mm

length:
24.7 mm

\
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time (s)
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Unidirectional Strain Maps

@ Unidirectional Strain Maps
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ey
Decompose the additive strain signal into unidirectional
strain maps

Develop a model for creating unidirectional
surface strain maps:

@ Assume a shape function.
@ Impose boundary conditions.

o Calculate function parameters via a
least square estimation.
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Sz s
Shape function

a
Xty
X2—1—xy—i—y2
x3+x2y+xy2+y3
x4-|—x3y-|—x2y2 -|—xy3+y4

schematic representation of cantilever plate

. Pascals Triangle for displacement function
with SEC array
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Shape function

a
Xty
X2—{—xy—i—y2
x3+x2y+xy2+y3
x4-|-x3y-|—x2y2 -I-Xy3+y4

schematic representation of cantilever plate

. Pascals Triangle for displacement function
with SEC array

Kirchroff’s theory of thin plates

c 8 c
ex(x,y) = ~3 —8; =-3 (232 + 2asy + 6asx + 2agy2 + 6aioxy + 12aux2)
62
gy(x,y) = —% 8—; = —g (233 + 2a4x + 6a7y + 6agxy + 2a0x> + 12a12y2)
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Unidirectional Strain Maps Strain Maps

Unidirectional strain maps

&(x,y) = b1 + box + bgy + bax® + bsxy + bgy?
£y(x,y) = by + bgx + boy + brox* + biixy + bray?
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Unidirectional Strain Maps Strain Maps

Unidirectional strain maps

&(x,y) = b1 + box + bgy + bax® + bsxy + bgy?
£y(x,y) = by + bgx + boy + brox* + biixy + bray?

solve for b using least squares estimator (LSE):

L1
B = X(HTH)—lHTs
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Unidirectional Strain Maps Strain Maps

Real-time unidirectional strain maps

Wind Tunnel Testing Strain Maps
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https://www.youtube.com/watch?v=jCAbYzSXPI8
https://www.youtube.com/watch?v=jQSBzhg07ms

Network Reconstruction Feature (NeRF)

@ Network Reconstruction Feature (NeRF)
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Network Reconstruction Feature (NeRF) ONVEIVEW

Damage detection and localization through a Network
Reconstruction Feature (NeRF)
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Network Reconstruction Feature (NeRF) ONVEIVEW

Damage detection and localization through a Network
Reconstruction Feature (NeRF)

@ Data fusion of the additive SEC signal and unidirectional RSG signal.
@ Distinguish healthy states form possibly damaged states.
© Capable of damage detection, quantification and localization.

© Can function without historical data set or external models.

|
|
: least | /estimated &, /—+>» Sglﬁf:g ’
squares | reconstruction
—| S
I estimator error | >
I
I
I

' (LSE) | > /eslimated s, /| (MSE)

Extract damage features based on the fit of a shape function

EMI 2017 I s



Eutiackle
Building a HDSN

plate>

Deploying HDSN of SECs and RSGs onto a plate.
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Eutiackle
Building a HDSN

Deploying HDSN of SECs and RSGs onto a plate.
EMI 2017 I




Eutiackle
Building a HDSN

Deploying HDSN of SECs and RSGs onto a plate.
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Eutiackle
Building a HDSN

Deploying HDSN of SECs and RSGs onto a plate.
EMI 2017 I




Network Reconstruction Feature (NeRF) Damage Cases

Damage cases

Cantilever plate with damage induced as reduction of stiffness.
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Network Reconstruction Feature (NeRF) Damage Cases

Damage cases

Cantilever plate with damage induced as reduction of stiffness.
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Network Reconstruction Feature (NeRF) [EBETIEV-CNEEES

Damage cases
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Cantilever plate with damage induced as reduction of stiffness.
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Error Detection
Error detection
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Error in strain map reconstitution measured at sensor locations.
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Feature Extraction
Feature extraction

healthy damaged
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Features extracted from change in fit with increasing shape function complexity
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NSV E B e N EEWTCN (VNI Damage Localization: Cantilever Plate

Damage localization

feature distance
i
2 =}

[=]

Damage localization on cantilever plate with damage induced as reduction of stiffness.
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NSV E B e N EEWTCN (VNI Damage Localization: Cantilever Plate

Damage localization

feature distance

Damage localization on cantilever plate with damage induced as reduction of stiffness.
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NSV E B e N EEWTCN (VNI Damage Localization: Cantilever Plate

Damage localization
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Damage localization on cantilever plate with damage induced as reduction of stiffness.
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Experimental Validation

@ Experimental Validation
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(G EEVRVEIGEEI Ml \Wind Turbine Blade

Experimental wind tunnel validation
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Wind turbine blade shaped cantilever plate with damage induced as reduction of stiffens,
pressure loading on face.
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T TGS
Leading edge damage

leading edge bolts remov‘e‘d

feature distance (u¢)

0 T T T
5 10 15 20 25

length of unsupported leading edge (cm)

NeRF algorithm results for changing boundary conditions on the leading edge of the monitored
substrate.
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T TGS
Changing load paths caused by damage

healthy damaged
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T TGS
Cut damage

damage added to substrate »

feature distance (ue)

T T T T T
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length of cut (cm)

NeRF algorithm results for cut damage induced into the center of the monitored substrate.

EMI 2017 I



Conclusion

Conclusion

@ Low cost measurement system for mesoscale structures.
@ Demonstrated capability to detect and localize damage.

Limitations

@ Can be difficult to distinguish damage for complex loading.

SEC technology: 1) SEC sensor; 2) 4 channel DAQ; and 3) HDSN; 4) HDSN.
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Thank you

Sponsors

jowa
energy
center

Upcoming wind energy conference

_\ NAWEA
/ " NORTH AMERICAN
WIND ENERGY ACADEMY
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