High-rate Structural Health Monitoring:
Part-ll Embedded System Design

Austin Downey'2, Jason Bakos?

Department of Mechanical Engineering
2Department of Civil and Environmental Engineering
3Department of Computer Science and Engineering

University of South Carolina, Columbia, SC 29208

N/

-\\/-
N
) (Tl

UNIVERSITY OF

SOUTH CAROLINA




Structures Experiencing High-Rate Dynamic Events

Active Blast Mitigation

Applications:
1. Vehicle collision
. Blast mitigation
. Ballistic packages
. Hypersonic vehicles
. Hard Target Penetrating Weapons

Ballistics Packages
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Next Generation Fuzes

Develop a computationally efficient real-time model-updating framework for structures experiencing
high-rate dynamics capable of being executed on edge-computing platforms with a timestep of 1 ms
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General Purpose Operating System (GPOS)

Key Challenges Identified
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Key challenges:
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max time of 0.438 ms

1. The deterministic transfer of knowledge, and consequences of , . \ |
0.36 0.38 0.40 0.42 0.44

missing information, between data-driven models and time (ms)
controllers/decision-makers when such strict latencies are required. Real-time Operating System (RTOS)

16

The stability and robustness of model-updating schemes with short .-

£ 12

time steps, particularly an understanding of how faulty sensors ;"
affect the updated model. :

The validation of low-latency real-time machine learning control o el ml'-m—

time (ms)

schemes that are co-designed with hardware. Accurately capturing
the effects of delays caused by data-acquisition systems and the
complex interaction between controllers and the real-world plant is
important to the controller’s validation.




Hardware-software Co-design
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Timing Distribution

Selecting Proper Hardware
BN GPOS

A few hardware considerations:
« General Purpose Operating System (GPOS):
« [Easy to program.

« No guarantees on timing, no consideration of
timing deadlines.

* Real-time Operating System (RTOS):
« Still relatively easy to program. 0.001 -

percentage of total instances

0.01 7

200

« Not faster; but provides decent bounding on jitter. . .
mean normalized forward pass time (us)

* Field Programmable Gate Array (FPGA):

* Not simple to program.

r A
» Perfectly timing deterministic. |
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Consequences of Missing Information at Strict Latencies

The exchange of data across processing systems has
several key challenges for challenges:

« To use updated models, there needs to be some sort PC " LabVIEW Real-Time System |
of Al or decision-maker one level up. | |

Human

To maintain high-rate transfers (to and from an Machine ReakTime o o  £pGA
Interface Processor

FPGA), an RTOS will be needed between an GPOS (HMI)
and an FPGA.

Information for decision making is typically done |
though a “publish and subscribe” transfer protocol, but PR - e m— e
this will introduce large uncertainties in timing. : S = e mﬂ

C Series 10
v Real-Time Scan

FPGAs are well suited for doing repetitive tasks, and -
J P E L.

as such should be considered for data fusion and
filtration of sensor signals.

Embedded System Components. https://www.ni.com/en-
us/support/documentation/supplemental/16/understanding-communication-
options-between-the-windows-hmi--rt-.html




Operating System/Hardware Selection
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Experimental System used for this work

DROPBEAR experimental testbed:

« The Dynamic Reproduction of Projectiles in
Ballistic Environments for Advanced
Research (DROPBEAR) was used to
generate the experimental data in this work.

Cantilever beam with a controllable roller to
alter the state.
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Acceleration and pin location are recorded.

Dataset available on GitHub at:
https://github.com/High-Rate-SHM-Working-
Group/Dataset-2-DROPBEAR-Acceleration-
vs-Roller-Displacement
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https://github.com/High-Rate-SHM-Working-Group/Dataset-2-DROPBEAR-Acceleration-vs-Roller-Displacement
https://github.com/High-Rate-SHM-Working-Group/Dataset-2-DROPBEAR-Acceleration-vs-Roller-Displacement
https://github.com/High-Rate-SHM-Working-Group/Dataset-2-DROPBEAR-Acceleration-vs-Roller-Displacement

LSTM-based Real-time State Estimation

In this work:

* Long short-term memory (LSTM) models are used for real-
time state estimation.

* These data-driven models are trained offline on pre-recorded

data.
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Long Short-term Memory Model

LSTM features and development:

 LSTMs are a Recurrent Neural Network (RNN) that
propagates through long- and short-term memory forms.

* Four stacked LSTM cells (30, 30, 15, 15 units) with a fully {U; [B: [ [W[U, :
connected layer at the output. - L S |

x,| Dneural network layer O pointwise operation

1 LSTM cell
2 LSTM cell
3 LSTM cell
4 LSTM cell
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Model Deployment on a

Real-Time Operating System (RTOS)
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Model Deployment on RTOS STy
Real-time validation performed on an embedded system running:
« The experimental setup consisted of two subsystems:

 Hardware reproducing Signals reproduces the dataset. I - o

* Real-time Target re-digitizes and feeds the input into the

LSTM.
« Datais sampled at 1250 S/s; a prediction is made every 800 us.
« State predictions are returned via a FIFO buffer to PC.
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Real-time LSTM Modeling Results

LSTM model performance results:
« SNR,z 17.4888 dB.
« RMSE of 11.471 m mm.

« LSTM traces reference pin location closely.
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Real-time LSTM Modeling Results

LSTM model timing results:
« Average: 800 ps.
« Standard deviation: 1.79 us.
« Max overshoot: 26 us.

Timing accuracy results:
« Execution-time jitter as
expected.
« Timing follows a normal
distribution.

Intel Atom® Processor E3825
Total Cores: 2 (2 threads)
Processor Base Frequency: 1.33
GHz
Cache: 1 MB L2 Cache
Use Conditions: Automotive,
Embedded

Timing Distribution

percentage of total instances

780 790 800 810 820
forward pass time (Us)




Model Deployment on a Field

Programable Gate Array (FPGA)
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Model Deployment on FPGA

LSTM model deployed on a Xilinx Virtex 7 (VC707) FPGA:
* Implemented in both 16-bit fixed point.

* Developed an LSTM hardware accelerator where data in
and out the FPGA is pre and post-processed with the
MicroBlaze soft core processor.
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LSTM deployment on an FPGA

The developed hardware accelerator is split up into the LSTM'’s gates for deployment.
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Real-time LSTM Modeling Results

16-bit fixed point model performance:
SNR 5 of 19.54 dB.
RMSE of 9.1 mm.
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Real-time LSTM Timing Results

16-bit fixed point model performance:
 Time step of 16.7 ps.
« Standard deviation: 0.0509 ps.
50X speed up over RTOS.

Timing Distribution
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FPGA Resource Utilization Results

Synthesized for the Xilinx Virtex 7
(VC707):

« Consume less the 10% of
FPGA resources.

« Has potential for deployment
to much smaller FPGAs

https://www.eetimes.com/new-xilinx-virtex-7-2000t-
fpga-provides-equivalent-of-20-million-asic-gates/
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GPOS vs RTOS vs FPGA
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Timing characteristics by hardware implementation

General Purpose Operating Real-Time Operating Field Programmable Gate
System (GPOS) System (RTOS) Array (FPGA)

mean = 157.394 us mean = 800.0 us mean = 16.719 us
STD =20.189 us STD = 1.789 us STD =0.051 us
min = 89.0 us min = 776.0 us min = 16.495 us
max = 468.0 us max = 826.0 us max = 16.99 us
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Example: Memory Bandwidth Limitations
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Real-Time Model Updating Through Error Minimization

A frequency-based model updating technique was developed to update an FEA model of the system.

Experimental

DROPBEAR experimental testbench data aquistion window
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Downey A., et al,. “Millisecond Model Updating for Structures Experiencing Unmodeled High-Rate Dynamic Events” Mechanical Systems and Signal
Processing 138, 2020




Eigen Value Problem - Can we just solve it faster?

« General Eigenvalue solutions are a well studied problem.
« Hardware accelerators do exist, but their throughput is limited by communication bandwidth.
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Developed a specialized
Cholesky-Jacobi method
formulated specifically for
this challenge; a 66 node
FEA model can be solved for
within the 1 ms.




LEMP usage In the ‘70s and ’80s
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LEMP enabled these calculations to be done very efficiently
on very slow desktop computers.

» Structural Measurements Systems (SMS) sold a custom
hardware and software setup.

» This was before the “personal computer” stage.

SMS modal software
called SDM used LEMP

HP3000 desktop running “Rocky Mountain BASIC”
HP5423 first dedicated
FFT/Modal system - 1979




Transformation

Local Eigenvalue Modification Procedure (LEMP)

Coupled single DOF systems representing the altered state
\I\‘k

n independent single DOF systems representing the initial state
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Physical
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Solved using Divide
and Conquer method
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Modal
Space

Avitabile, P., “Twenty Years of Structural Dynamic Modification- A Review,” Sound and Vibration, pp. 14-25. 2003
Drnek, C. R., “Local eigenvalue modification procedure for real-time model updating of structures experiencing high-rate dynamic events,” (2020).
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LEMP State Estimation Results

LEMP has been shown to:

« Have similar accuracy to
the generalized
eigenvalue solver

generalized eigenvalue solver
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Memory challenges — Hardware/software Co-design

Algorithm Timing
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DISCUSSION

Open-Source Codes and Data Sets
LEMP solver:

Secular equation solver:

DROPBEAR dataset:

Open-Source library for Deploying LSTMs to the NI Linux Real-time Operating
System at:

Contact Information: Austin Downey

Email: austindowney@sc.edu

Github: https://github.com/austindowney
Github-Lab: https://github.com/Arts-laboratory/
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https://github.com/austindowney
https://github.com/Arts-laboratory/
https://github.com/ARTS-Laboratory/Paper-Real-time-Structural-Model-Updating-using-Local-Eigenvalue-Modification-Procedure
https://github.com/ARTS-Laboratory/Paper-Real-time-Structural-Model-Updating-using-Local-Eigenvalue-Modification-Procedure
https://github.com/ARTS-Laboratory/Paper-Development-of-a-Real-time-solver-for-the-Local-Eigenvalue-Modification-Procedure
https://github.com/ARTS-Laboratory/Paper-Development-of-a-Real-time-solver-for-the-Local-Eigenvalue-Modification-Procedure
https://github.com/ARTS-Laboratory/Paper-Development-of-a-Real-time-solver-for-the-Local-Eigenvalue-Modification-Procedure
https://github.com/High-Rate-SHM-Working-Group/Dataset-2-DROPBEAR-Acceleration-vs-Roller-Displacement
https://github.com/High-Rate-SHM-Working-Group/Dataset-2-DROPBEAR-Acceleration-vs-Roller-Displacement
https://github.com/ARTS-Laboratory/LabVIEW-LSTM
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