Hybrid Dense Sensor Network for Damage Detection on Wind Turbine Blades

Austin Downey, Simon Laflamme, Filippo Ubertini, Heather Sauder and Partha Sarkar

> NSF-IGERT fellow Wind Energy Science Engineering and Policy

austindowney@gmail.com - adowney2.public.iastate.com

September 26th 2016

(Austin R.J. Downey - ISU)

Hybrid Dense Sensor Network for Damage Detection on Wind Turbine Blades

Soft Elastomeric Capacitor (SEC) Fiber Bragg Grating (FBG) Resistive Strain Gauge (RSG)

Overview

Contents

- Introduction (lowa!)
- Motivation
- Hybrid Dense Sensor Networks (HDSN)
- Network Reconstruction Feature (NeRF)
- Simulation
- Conclusion

Failure of a 49 meter wind turbine blade wind-watch

Center for wind

US wind energy share of electricity generation during 2015 iowa.gov

Largest wind project (building)

Wind XI will add 1000 2-megawatt machines. slate.com

(Austin R.J. Downey - ISU)

Tallest tower

MidAmerican building tallest land-based (US) wind turbine (115 meter hub height) ${\tt Donnelle}$ ${\tt Eller}$

Motivation

- In 2015 the United States was the world's number one producer of wind energy.
- In total, domestic wind energy provided 181.79 terawatt-hours or 5.1% of the nations end use electricity demand in 2015. NREL

Blades, a mesoscale challenge

Experimental 75 meter blade. Siemens

Bigger Blades

Enercon has introduced low-wind speed versions to its 4MW and 2MW onshore wind turbine platform.

Remote and Extreme Conditions

Blade installation in Kotezbue Alaska, used with permission KEA

Structural Health Monitoring of Wind Turbine Blades

Utilizing large area electronics for global coverage

Hybrid Dense Sensor Networks (HDSN)

HDSN: 20-SEC, 46-RGSs. Austin Downey

Commercial fiber Bragg grating sensors Smart Fibres

HDSN: 12-SEC, 8-RGSs. Austin Downey

HDSN: 276-SECs and 140-FBG nodes. Austin Downey

Wind Tunnel Testing

Wind Tunnel Testing

Implementation

Implementation

- Deployable inside wind turbine blades
- Ø Retrofit or OEM.
- Useful for other large structures

Inside a 45 meter GE blade Austin Downey

Typical damage cases: 1) through crack; 2-3) edge split; 4) impact. Austin Downey

Damage detection and localization through a Network Reconstruction Feature (NeRF)

Damage detection and localization through a Network Reconstruction Feature (NeRF)

- **()** Data fusion of the additive SEC signal and unidirectional FBG signal.
- ② Distinguish healthy states form possibly damaged states.
- Sepable of damage detection, quantification and localization.
- Oan function without historical data set or external models.

Extract damage features based on the fit of a shape function

Shape Function

schematic representation of cantilever plate with SEC array

Pascals Triangle for displacement function

Shape Function

a x + y $x^{2} + xy + y^{2}$ $x^{3} + x^{2}y + xy^{2} + y^{3}$ $x^{4} + x^{3}y + x^{2}y^{2} + xy^{3} + y^{4}$

schematic representation of cantilever plate with SEC array

Pascals Triangle for displacement function

Kirchroff's theory of thin plates

$$\varepsilon_{x}(x,y) = -\frac{c}{2}\frac{\partial^{2}z}{\partial x^{2}} = -\frac{c}{2}\left(2a_{2} + 2a_{5}y + 6a_{6}x + 2a_{9}y^{2} + 6a_{10}xy + 12a_{11}x^{2}\right)$$

$$\varepsilon_{y}(x,y) = -\frac{c}{2}\frac{\partial^{2}z}{\partial y^{2}} = -\frac{c}{2}\left(2a_{3} + 2a_{4}x + 6a_{7}y + 6a_{8}xy + 2a_{9}x^{2} + 12a_{12}y^{2}\right)$$

Strain maps

Unidirectional strain maps

$$\hat{\varepsilon_x}(x,y) = \hat{b}_1 + \hat{b}_2 x + \hat{b}_3 y + \hat{b}_4 x^2 + \hat{b}_5 xy + \hat{b}_6 y^2$$
$$\hat{\varepsilon_y}(x,y) = \hat{b}_7 + \hat{b}_8 x + \hat{b}_9 y + \hat{b}_{10} x^2 + \hat{b}_{11} xy + \hat{b}_{12} y^2$$

Unidirectional strain maps

$$\hat{c_x}(x,y) = \hat{b}_1 + \hat{b}_2 x + \hat{b}_3 y + \hat{b}_4 x^2 + \hat{b}_5 x y + \hat{b}_6 y^2$$
$$\hat{c_y}(x,y) = \hat{b}_7 + \hat{b}_8 x + \hat{b}_9 y + \hat{b}_{10} x^2 + \hat{b}_{11} x y + \hat{b}_{12} y^2$$

solve for *b* using least squares estimator (LSE):

$$\hat{\mathbf{B}} = rac{1}{\lambda} (\mathbf{H}^{\mathcal{T}} \mathbf{H})^{-1} \mathbf{H}^{\mathcal{T}} \mathbf{S}$$

Deploying HDSN of SECs and FBG onto a plate.

Deploying HDSN of SECs and FBG onto a plate.

(Austin R.J. Downey - ISU)

Deploying HDSN of SECs and FBG onto a plate.

Building a HDSN

Deploying HDSN of SECs and FBG onto a plate.

Cantilever plate with damage induced as reduction of stiffness.

Damage Cases

Cantilever plate with damage induced as reduction of stiffness.

Damage Cases

Cantilever plate with damage induced as reduction of stiffness.

Error Detection

Error Detection

Error in strain map reconstitution measures at sensor locations.

Feature Extraction

Features extracted from change in fit with increasing shape function complexity

Damage Quantification

Different damage levels in a feature-feature plot.

Damage Quantification

Different damage levels in a feature-feature plot.

Wind Turbine Blade

Wind Turbine Blade Example

Wind turbine blade shaped cantilever plate with damage induced as reduction of stiffens, pressure loading on face.

Conclusion

- Low cost measurement system for large area structures.
- Developed a damage detection technique using a HDSN.
- Demonstrated its ability to detect and localize damage.
- Developed basic understanding of the methods limitations.

SEC technology: 1) SEC sensor; 2) 4 channel DAQ; and 3) HDSN; 4) HDSN.

Conclusion

Benefits

- No need for a external model or prolonged monitoring.
- Computationally efficient way to categorize HDSNs as healthy or possibly damaged.

Limitations

• Can be difficult to distinguish damage from complex loading.

SECs of varying size.

Future Work

Thank you

Upcoming wind energy conference

Sep 26-29, 2017 Ames, Iowa

Addressing challenges to achieving 35% of North America's electricity from wind by 2033