

AFRL

High-Rate Structural Health Monitoring and Prognostics: An Overview

Jacob Dodson Munitions Directorate Air Force Research Laboratory

Austin Downey Department of Mechanical Engineering University of South Carolina Michael Todd Department of Structural Engineering, University of California, San Diego

Adriane G. Moura Emerald Coast Division, Applied Research Associates Zhu Mao, Peter Avitabile Structural Dynamics and Acoustic Systems Laboratory, University of Massachusetts Lowell

Erik Blasch Air Force Office of Scientific Research

Simon Laflamme Department of Civil, Construction, and Environmental Engineering, Iowa State University Yang Wang School of Civil and Environmental Engineering, Georgia Institute of Technology

Submission #10523 IMAC-XXXIX, February 18-20 2021 Virtual Presentation

Motivation – Air Force

Air Force Weapon Components – Extreme Mechanical Environments

Input Characteristics

- Repeated shocks
- Multiaxial
- Short rise time/high frequency
- Short & Long duration

THE AIR FORCE RESEARCH LABORATORY

Definition – High Rate Dynamics

A dynamic response from:

- high-rate (< 100 ms) and
- high-amplitude (acceleration > 100 g_n) event such as a blast or impact.

High-rate dynamics contains:

- 1. Large **uncertainties** in the external loads;
- 2. High levels of **non-stationarities** [in the structure] and heavy disturbances;
- **3. Unmodeled dynamics** from changes in system configuration.

Blast against civil structures

High Speed aircraft and airframes

Automotive impact and crashes

Lightning Strikes on aircraft

Hong, J. et.al. Introduction to state estimation of high-rate system dynamics. Sensors, 18(2):217, Jan 2018.

THE AIR FORCE RESEARCH LABORATORY

Definition – "High Rate" Timescales

The high-rate structural health monitoring problem has multiple time-scales to address:

Time scales of	Time Scales	Examples
duration of the event	30 µs – 100 ms	Structural loading - blast, high-speed impact, automotive crash
sensor response	3 μs – 10 μs	Accelerometer, strain gage, etc.
different physical behavior regimes	250 μs – 1 sec	Energy propagation, structural resonance
algorithm execution and decision-	100 µs – 1 ms	Damage detection, uncertainty quantification, state
making		awareness, decision making

We have defined **3 timescale regimes** for the time elapsed between event detection and decision-making (i.e. latency):

THE AIR FORCE RESEARCH LABORATORY

Technical Challenges of HR-SHM

Goal: Determine the condition of a structural system and make system decisions in *less than a millisecond*, while the structure sustains unknown/unmeasured, high-magnitude, and short-duration impacts

Technical Challenges:

Adequate Sensing

Need to achieve multiresolution (time, space, and frequency) sensing awareness

Lack of System Knowledge

Need to [partially] understand physics and approximate dynamics for *structural awareness*

High Variability and Uncertainty in Loading

Due to unmodeled dynamics occurring during high-rate dynamics; Need to be able to establish *environmental awareness*

Limited resources for algorithm implementation

Need to identify algorithms and hardware for 1 ms timescales while maintaining energy awareness

THE AIR FORCE RESEARCH LABORATORY

Technical Objectives and Approaches to enable HR-SHM

To achieve...

Sensing Awareness:

- Non-inertial and non-contact sensing methods
- Full field sensing algorithms and data fusion, contextual-artificial intelligence approaches

Structural & Environment Awareness:

- Physics-enhanced machine learning (PEML) models
- Real-time fusion of high-speed dynamic data augmented by model-based data
 - Model reduction and model-updating (offline and real-time) approaches
- Uncertainty quantification (UQ) methods to enable decisions connected to confidences

Energy Awareness:

- **Cognitive sensing** configuring sensors and hardware to measure at various timescales
 - Combining both hardware and software to enable high-rate executions

System Development

- Experimental Validation for high-rate algorithms
 - Suite of experimental data sets and apparatus for different aspects of the dynamics

Summary

There is a need **for High-Rate Structural Health monitoring (HR-SHM)**, structural prognostics, and real-time decision making for both military and commercial applications.

HR-SHM should target **1 ms timescales** from event detection to decision-making (current goal)

Summary of Technical Objectives and Needs are:

Technical Objectives	Technical Challenges/Needs
Sensing Awareness	Adequate Sensing
Structural Awareness	System Knowledge Understanding
Environment Awareness	High Variability in Loading
Energy Awareness	Limited Resources for Algorithm Implementation
System Development	Experimental Validation
Risk-based Decision Making	High-Rate Uncertainty Quantification

During the Virtual IMAC XXXIX, join the panel discussion on "High-Rate Structural Health Monitoring and Prognostics"

High-rate Structural Monitoring, Damage Detection, Prognostics, and Reactions Working Group

Novel Variable Input Observer for High-Rate State Estimation PI: Dr. Simon Laflamme, Iowa State Univ.

Nonlinear Force Identification and Localization for External Forces PI: Dr. Peter Avitabile, Univ. of Massachusetts at Lowell

Multiscale SHM using Data-Driven Methods PI: Dr. Zhu Mao, Univ. of Massachusetts at Lowell. APPLIED REJEARCH AJJOCIAN

Dr. Alain Beliveau Dr. Adriane Moura

Real-time Impact Load Identification for Nonlinear Dynamical Systems PI: Dr. Yang Wang, Georgia Institute of Technology

Real-Time State Monitoring for Air Force Structures Pl: Dr. Austin Downey South Carolina University.

Prognosis of Damage Using Uncertainty-Quantified Failure Forecast Method PI: Dr. Michael Todd, Univ. of California, San Diego

11 1 0

THE AIR FORCE RESEARCH LABORATORY

Research Opportunities at AFRL/RW

AFRL Scholar

Undergraduate/Graduate Students

- Summer Internship Program
- 8-10 weeks

🔊 USSF

https://afrlscholars.usra.edu/students

AF S&T Fellowship Post-Doc

Recently finished Ph.D.

- Work onsite at DoD Research Labs w/ government advisor
- 1-2 Years

Structural Dynamics and Instrumentation of Electronic Systems

http://nrc58.nas.edu/RAPLab10/Opportunity/Opportunity.aspx?LabCode=13& ROPCD=134502&RONum=C0147

SMART Scholarship for Service

Undergraduate/Graduate Students

- DoD sponsored scholarship (1-5 years)
- Summer Internships at Gov. Research facility
- Employment Obligation afterward

https://www.smartscholarship.org/smart

Summer Faculty Fellowship Program

Professors

- AFRL/AFOSR Sponsored
- Work with hosting research lab
- On site for 8-10 weeks

https://afsffp.sysplus.com/

THE AIR FORCE RESEARCH LABORATORY