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Natural Hazard Mitigation Solutions on Structures

• Passive Damping System

– Obstacle:

• Limited bandwidth for multi-level winds

• Semi-active Damping System

– Advantage:

• Applicable to board range of excitations, ideal for multi-hazards

• Low energy input for large energy dissipation

• Structural System Modification

– Obstacle:

• Uneconomical 

• Difficult in implementation for existing building
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The Banded Rotary Friction Device

• A friction-based structural damper designed 

for high performance and mechanical 

simplicity located at Lehigh University 

ATLSS facility.

• An internal drum rotates against stationary 

friction bands.

• Self-energizing effect: energy from damping 

displacement increases damper force.

• Semi-active control possible with actuators 

connected to both ends of the band.

𝐶 = 𝑒𝜇𝜙 − 1
𝑟

𝑟𝑏
≈ 150
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Problems in modeling friction

• Rate-dependent properties.

• Hysteretic behavior.

• Stribeck effect: static friction is greater than kinetic 

friction.

• Backlash: loss of friction during reversal of travel.
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Device Characterization

• The device was characterized with four sinusoidal displacement tests with frequencies 

between 0.05 Hz and 1.0 Hz.

• The backlash effect: self-energizing effect depletes during reversal of travel.

backlash region backlash region
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Problems using current models

• Standard dry friction models like the LuGre model cannot capture backlash.
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Model Development

• Physics models:

• Informed structure

• Certain performance

• ML models:

• Excellent data-driven performance

• Combined physics-ML approach:

• Benefits of both approaches

• Real-time parameter updating
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Model Development

• Physics-informed component: the LuGre model.

• A ‘rate and state’ model with one state variable commonly used to describe dry friction 

systems.

• Physical interpretation of parameters:

• Static parameters: 𝐹𝑐, 𝐹𝑠, 𝑣𝑠.

• Dynamic parameters: 𝜎0, 𝜎1, 𝜎2.

• 𝜎0 controls hysteresis rate of change–backlash effect.

ሶ𝑧 = 𝑣 − 𝜎0
𝑣

𝑔(𝑣)
𝑧

𝐹 = 𝜎0𝑧 + 𝜎1 ሶ𝑧 + 𝜎2𝑣

𝑔 𝑣 = 𝐹𝑐 + 𝐹𝑠 − 𝐹𝑐

𝑣
𝑣𝑠
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Model Development

• 𝜎0 controls hysteresis rate of change–backlash effect.

constant 𝜎0

seemingly variable 𝜎0
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Model Development

• Machine-learning component: long short-term memory.

• A class of recurrent neural network designed to detect longer time-series patterns than 

standard RNNs.

• State vectors ℎ𝑡 and 𝑐𝑡 maintain state information.

𝑓𝑡 = 𝜎𝑔 𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓
𝑖𝑡 = 𝜎𝑔 𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖
𝑜𝑡 = 𝜎𝑔 𝑊𝑖𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜
ǁ𝑐𝑡 = 𝜎ℎ 𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐
𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ ǁ𝑐𝑡

ℎ𝑡 = 𝑜𝑡 ∘ 𝜎ℎ 𝑐𝑡
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Model Training

• Static parameters 𝐹𝑐, 𝐹𝑠, and 𝑣𝑠
found with a least-squares analysis.

• Supervised training procedure using 

damping force measured during 

characterization test.

• Backpropagation provides an error 

gradient ൗ𝜕𝜀
𝜕𝜎0

as an intermediate 

value in updating weights.

Forward inference

Backpropagation
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Results

• Compared against LuGre models found with least-squares fit.

• Normalized root mean squared error from 6.71% to 3.16%, a reduction of 53%.

• Most of the error reduction comes from the ability to reproduce the backlash effect.

LuGre model physics-ML model

dataset SNR (dB) NRMSE SNR (dB) NRMSE

0.05 Hz 13.22 6.65% 19.26 3.32%

0.1 Hz 13.49 6.10% 19.88 2.92%

0.5 Hz 9.74 8.20% 19.44 2.69%

1.0 Hz 8.97 9.06% 17.91 3.24%

overall 12.85 6.71% 19.39 3.16%
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Results
Comparison between standard LuGre model and physics-ML model
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Results

• The ML model produced a time-dependent function for 𝜎0—without any measurement of 

𝜎0.

• Applications in ‘indirect measurement’ time-series characterization of physical systems.

𝜎
0
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Conclusion

• Due to the backlash effect, characterization of friction dampers with standard models is 

difficult.

• A standard friction model was augmented with time-series parameter prediction supplied 

by an ML model and applied to a rotary friction damper.

• The combined physics-ML model was able to reduce error by 53% compared to a standard 

LuGre model.

• Physics-informed machine learning combines the benefits of informed structure and data-

driven learning.
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