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1 Introduction
High-rate structural state estimation is a field of focus for developing next-generation control schemes [1].
Orbital infrastructure, hypersonic vehicles, hard target penetrating munitions, and blast mitigation systems
are intended to operate in high-rate dynamic environments [2–4]. Structures subjected to shock loads
resulting in high accelerations of more than 100 Gs in less than 100 milliseconds are considered to be in the
high-rate dynamic regime [5]. Due to the dynamic variations and high uncertainty of such environments, the
estimated state of those systems should be updated within the sub-millisecond range. Minimizing the latency
associated with state estimation algorithms allows for a faster response time, desirable for high-rate control
applications. Utilizing the Dynamic Reproduction of Projectiles in Ballistic Environments for Advanced
Research (DROPBEAR) system previously developed by the Air Force research laboratory and modeled by
Joyce et al. [6], a coupled hardware-software system was designed to investigate the possibility of using
a long short-term memory (LSTM) algorithm in a high-rate state estimation framework [7]. Specifically,
this work presents a methodology of offline training with the DROPBEAR dataset and deployment to a
real-time system where the immediate goal of this work is to feed the state estimator LSTM architecture the
acceleration data with the prediction output being the pin location. Using data on the computation time of
the real-time system, a timing model is developed to characterize models as real-time feasible or infeasible.
Finally, a feasible model is selected for deployment on the real-time target. Experimental results and error
are reported. The contributions of this work are a decrease in latency between state predictions and an
investigation into the performance of models with different architectures.

2 Background
The DROPBEAR experimental testbed shown in figure 1 consists of a cantilevered beam fitted with an
accelerometer, on the free end, to measure propagating vibrations [6]. A linear actuator mounted with
movable pin support is used to alter the state of the structure simulating damage while a displacement
sensor is used to measure the location of the pin movement. The continuously changing roller condition
simulates the changing state of a structure as it accumulates damage. The data set used in this work is made
available through a public repository [8].
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Figure 1: DROPBEAR experimental setup along with the displacement and acceleration signals [8] (Austin
Downey, CC BY-SA 4.0).

Recurrent neural networks (RNNs), are a category of deep-learning architecture designed to handle
time-series data. Long short-term memory (LSTM) models time-series data by augmenting state vectors h
and c, which are trained to encode data about the system under study. Equations 1-6 describe a single-step
forward pass of one LSTM layer.

ft = σ
(
Wf xt +U f ht−1 +b f

)
(1)

it = σ (Wixt +Uiht−1 +bi) (2)

ot = σ (Woxt +Uoht−1 +bo) (3)

c̃t = tanh(Wcxt +Ucht−1 +bc) (4)

ct = ft ◦ ct−1 + it ◦ c̃t (5)

ht = ot ◦ tanh(ct) (6)

where the sigmoid activation function σ and hyperbolic tangent tanh are applied elementwise to the vector
and ◦ is the elementwise, or Hadamard, product. The size of the state vectors, termed the units, determines
complexity of patterns the LSTM is capable of representing. Alternatively, the complexity can be improved
by increasing the number of LSTM layers in the model. In this work, models were trained using Tensorflow
and Keras and implemented on the real-time target using LabVIEW Real-Time. The code for implementing
LSTMs has been made publicly available through an open-source LabVIEW library [9].

3 Methodology
Figure 2 shows the form of models developed in this work. Acceleration is sampled across one timestep to
be the input vector to the LSTM model and the state prediction is returned after one timestep of computation.
Sampling and computation happen simultaneously at each timestep so that a new state prediction is returned
every ∆t. The timing requirement ∆t determines the acceptable delay between the state occurrence and state
prediction. For this paper, a timing requirement of 500 µs was selected.

To constrain the search space, a standard of 16 samples per timestep was chosen. A grid search was
performed on the number model cells (between 1 to 3) and units per cell, (between 8 to 40 units), with
each cell having the same number of units. Not all trained models were feasible for real-time deployment.
Training was performed on sections of 0.1 s sampled randomly from the dataset. The state estimate after
0.1 s was used as the error source for backpropagation, and training ceased when error was detected to no
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Figure 2: Timeline of sampling and computation for a single timestep of a LSTM forward pass.

longer be decreasing. This methodology, as compared to batch training on the entire dataset, performed
better with respect to convergence time.

Figure 3: SNRdB values of models with different numbers of cells and units.

Figure 3 shows the signal to noise ratio measured in decibels (SNRdB) across the trained models. Models
marked with dots are real-time feasible and models marked with crosses are not feasible. In general, SNRdB
increases with increasing units per cell, but this pattern did not hold for three-cell models, which exhibited
a high variability in training with a downward slope. After performing the training search, the model with
two cells and 15 units was selected for real-time edge implementation.

The test set-up shown in figure 4 consists of a host machine, data synthesis device, and real-time target
machine. The data synthesis device, a cDAQ-9178 with a NI-9263 digital-to-analog module, reproduces the
analog signal of the DROPBEAR dataset. Model calculations are run with an enforced timing requirement
of 500 µs and the state prediction is then returned to the host machine via a first-in-first-out buffer. The real-
time device used is a cRIO-9035 with a 1.33 GHz dual-core Intel Atom (E3825) manufactured by NI. Data is
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Figure 4: Experimental setup of edge implementation along with a block diagram representation of the
experiment.

resampled using a NI-9201 12-bit analog-to-digital module. The real-time target runs NI Linux Real-Time,
an operating system developed by NI designed to improve determinism in the Linux kernel. LSTM models
were developed in LabVIEW [9] and deployed to a LabVIEW Real-Time environment, which allows easy
integration with data acquisition.

4 Results and Discussion
The real-time prediction of pin position is shown against the reference pin position in figure 5. Performance
is reported in table 1 in terms of signal-to-noise ratio measured in decibels (SNRdB), root mean squared error
(RMSE), and time response assurance criterion (TRAC), where TRAC is a metric varying between 0 to 1
measuring the correlation between two time series signals. The equation for TRAC is given in equation 7
for the reference time series vector y and prediction vector ŷ [10].

TRAC =
(yT ŷ)2

(yT y)(ŷT ŷ)
(7)

Figure 5: Results of the LSTM state estimation model on the real-time target.
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Table 1: Error report with multiple metrics.

simulated value real-time value

SNRdB 22.49 20.91
RMSE 6.44 mm 7.73 mm
TRAC 0.994 0.991

Figure 6: Timing distribution of LSTM single-timestep forward pass on real-time target.

The results reported for the simulated values are those from a computational pass across the dataset
performed after training. The 1.59 dB loss of signal and 20.0% increase in RMSE error is a result of
processes in signal regeneration and resampling. In addition to noise in generating and reading the signal, as
signal generation and sampling occurred at different rates, the resampling which occurred digitally during
training was performed via analog sampling during the experiment. Zero-order hold effects of the signal
generation would then affect resampling, especially as the resampling rate (32 kS/s) is higher than the
generation rate (25.6 kS/s).

Jitter, or deviation from the specified timing deadline, is a result of non-determinism introduced by the
Linux kernel. To investigate the consistency of the real-time target in meeting the timing deadline, figure 6
shows the distribution of the forward pass timing. The distribution follows a normal distribution centered
around the specified time of 500 µs with a standard deviation of 2.50 µs. The maximum overshoot, the
longest time reported over the deadline, was 37 µs while the shortest time reported was 34 µs ahead of the
deadline; resulting in a total jitter of 71 µs.

5 Conclusion
In this work, the problem of state estimation in real-time was addressed with the design of LSTM models
and their implementation on real-time systems. An empirically-derived timing model was used to identify
models capable of meeting a 500 µs deadline. A model was then verified with a deployment onto the
real-time system. By comparing simulated and real-time results of the same model, error as the result of
signal reproduction and resampling was quantified. An SNRdB of 20.91 was achieved on the real-time
system. An investigation of the timing distribution of the real-time target demonstrated the 500 µs deadline
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with a standard deviation of 2.50 µs and maximum overshoot of 37 µs. The results show that LSTMs
deployed to real-time systems are capable of achieving accurate state estimations at rates in the hundreds of
microseconds. Future work will search for ways to further increase the rate of state estimation.
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