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Why model friction?

• Rate-dependent properties.
• Hysteretic behavior.
• Stribeck effect: static friction is greater 

than kinetic friction.
• Backlash: loss of friction during reversal 

of travel.
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• A friction-based structural damper designed for high 
performance and mechanical simplicity.

• An internal drum rotates against stationary friction 
bands.

• Semi-active control possible with actuators 
connected to both ends of the band.

The Banded Rotary Friction Device



                     

             
              

            

             

              

              

                          

          

    

The Banded Rotary Friction Device



• The BRFD produces a large amplification of
friction force compared to applied force.

• Self-energizing effect: contact pressure
increases along the surface of the drum.

• The backlash effect: self-energizing effect
depletes during reversal of travel.

Device Characterization
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• Characterization tests were run under a 
sinusoidal displacement profile.

• Frequency of sinusoid, tension of the friction 
band were altered to produce 24 datasets.

• Validation data collected from five hybrid 
simulations under wind loading.
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Device Characterization



Model Development

•  h    G        :   ‘              ’       
commonly used to describe dry friction 
systems.

• Physical interpretation of parameters.

• Static parameters: 𝐹𝑐, 𝐹𝑠, 𝑣𝑠.
• Dynamic parameters: 𝜎0, 𝜎1, 𝜎2.

ሶ𝑧 = 𝑣 − 𝜎0
𝑣

𝑔 𝑣
𝑧

𝐹 = 𝜎0𝑧 + 𝜎1 ሶ𝑧 + 𝜎2𝑣

𝑔 𝑣 = 𝐹𝑐 + 𝐹𝑠 − 𝐹𝑐 𝑒
𝑣
𝑣𝑠

2



Model Development

• The LuGre model cannot capture changing normal 
force or backlash effect.

• Real-time parameter updating for 𝐹𝑐, 𝐹𝑠, 𝜎0 using 
machine learning.

• Long short-term memory cells: RNNs propagate a 
cell state and produce time-series output.

• Input: band tension.

ሶ𝑧 = 𝑣 − 𝜎0
𝑣

𝑔 𝑣
𝑧

𝐹 = 𝜎0𝑧 + 𝜎1 ሶ𝑧 + 𝜎2𝑣

𝑔 𝑣 = 𝐹𝑐 + 𝐹𝑠 − 𝐹𝑐 𝑒
𝑣
𝑣𝑠
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Model Training

(a)
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𝜀 = 𝐹𝑐, 𝐹𝑠 𝑝𝑟𝑒𝑑 − 𝐹𝑐 , 𝐹𝑠 𝑡𝑟𝑢𝑒
2

(b)

𝜀 = 𝐹𝑝𝑟𝑒𝑑 − 𝐹𝑡𝑟𝑢𝑒
2

• 𝐹𝑐, 𝐹𝑠 can be easily extracted from force data, but 𝜎0 cannot.
• Two-step training process for static and dynamic parameters.



• To provide comparison, a  LuGre model 
was parameterized to each 
characterization dataset.

• Loss of meaning for model parameters 
such as 𝜎0.

Passive mode LuGre models

0.05 Hz 0.1 Hz 0.5 Hz 1 Hz
20 lb 5.0% 5.2% 5.6% 6.6%
22 lb 5.6% 4.9% 5.0% 8.0%
25 lb 5.2% 5.5% 5.7% 5.8%
35 lb 5.0% 5.2% 5.1% 6.4%
70 lb 4.8% 4.9% 5.3% 5.9%
80 lb 4.2% 4.4% 5.0% 6.3%

displacement signal frequency
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Overall NRMSE: 4.5%



Deep learning-based model

• NRMSE decreased from 4.5% to 2.8%, a 
reduction of 37%.

• Most of the error reduction comes from 
the ability to reproduce the backlash 
effect. 

• Single model compared to 24 different 
models.

0.05 Hz 0.1 Hz 0.5 Hz 1 Hz
20 lb 6.8% 6.7% 5.9% 7.2%
22 lb 3.6% 3.5% 4.9% 6.3%
25 lb 4.3% 3.5% 4.0% 4.5%
35 lb 4.4% 3.9% 3.1% 3.9%
70 lb 5.4% 4.5% 3.1% 3.5%
80 lb 4.5% 3.8% 3.3% 3.7%
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Overall NRMSE: 2.8%



Validation on a wind event profile

• Overall NRMSE for the wind loading hybrid
simulation was 14.7%, showing limited
ability to generalize outside the dataset.

• Expanding the frequency sweep and
tension range could result in better fits to
the wind profiles.
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