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HIGH-RATE DYNAMICS 

• Description of High-rate dynamics:

• high-rate (< 100 ms)

• high-amplitude (acceleration > 100 g)

• such as a blast or an impact

• The high-rate dynamics are subjected to

• large uncertainties in external loads

• high levels of nonstationarities and heavy disturbances

• generation of unmodeled dynamics from changes in system 

configuration 
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STRUCTURES WITH HIGH-RATE DYNAMICS
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Ballistics packages

Hypersonic vehicles Space launch system

Vehicle collision

Blast seat energy absorbers

Blast protection damper



HIGH-RATE DYNAMICS (CONTINUES) 

• Goals:

• Application: Real-time decision-making of 
structures

• Required Technologies:

• Low-latency model updating

• System state prognostics in real-time

• Challenges:

• Computing power is limited 

• memory, available energy, processors

• Unknown sources of the inputs (forces, location)

• Inability to calculate fault scenarios in advance

• Rare and extreme situations
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METHODOLOGY

7



CONTRIBUTIONS OF THIS WORK

• The development of an online structural vibration time series forecasting hardware/software system

• An experimental investigation showing the potential of the FFT-based time series forecasting methodology 
for high-rate signals

• A detailed discussion of the periodicity challenge for FFT-based time series forecasting

• The key focus for the current hardware implementation

• FPGA resource utilization 

• timing constraints of various aspects of the methodology

• algorithm accuracy and limitations concerning different data
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EXPERIMENTAL SETUP
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EXPERIMENTAL SETUP FOR DATA GENERATION
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• This data is available in a public repository [1]

control computer

power amplifier

data acquisition

beam structure

accelerometer

[1] High-Rate-SHM-Working-Group. Dataset-4 univariate signal with nonstationarity.

https://github.com/High-RateSHM-Working-Group/Dataset-4-Univariate-signal-withnon-stationarity

electromagnetic shaker

https://github.com/High-RateSHM-Working-Group/Dataset-4-Univariate-signal-withnon-stationarity


DATA STRUCTURE

• The structure’s measured acceleration 
response for a composite sinusoidal 
input from the shaker. 

• Two sine wave signals are concatenated 
together at t=5  where a  nonstationary is 
present due to a change of frequency.

• The first half of the composite signal is 
built from 50, 70, and 100 Hz 
frequencies. 

• The second half signal consists of 50 
and 100 Hz frequencies.

• Four different sampled data were 
created from this data.
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DATA GENERATION EXPERIMENT VIDEO
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ALGORITHM
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ALGORITHM FOR FFT-BASED FORECASTING
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Schematic Algorithm diagram of FFT-based time series forecasting algorithms

• In FFT, the time domain and frequency domain maintain the circular topologies.

• The two endpoints of input length are assumed to meet at the same point.

• In a non-stationary signal, it is not possible to have all the embedded signals with different 
frequencies start at the same time. 

• For accurately capturing all the frequencies, the minimum period should be higher than the Nyquist 
limit.



ALGORITHM FOR FFT-BASED FORECASTING (CONTINUE)
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ALGORITHM FOR FFT-BASED FORECASTING (CONTINUE)
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PROBLEM STATEMENT
• The discrete Fourier transform (DFT) of that series

𝑥𝑘 = 

𝑛=0

𝑁−1

𝑥𝑛𝑒
−𝑖2𝜋 𝑘 Τ𝑛 𝑁 for 𝑘 = 0,… . , 𝑁

𝜔 = 2 Τ𝜋 𝑁 = 2𝜋𝑓
(𝑋𝑎𝑚𝑝)𝑘 = 𝑋𝑘

(𝑋𝑝ℎ𝑎𝑠𝑒)𝑘 = 𝑋𝑘/ 𝑋𝑘

• Similarly, the inverse DFT can be written as 

𝑥𝑛 =
1

𝑁


𝑘=0

𝑁−1

𝑥𝑘𝑒
−𝑖2𝜋𝑘𝑛/𝑁 for 𝑛 = 0,… . , 𝑁

• A new series of M length where M > N. The time series can be 

𝑥𝑚 = 

𝑘=0

𝑀−1

𝑋𝑎𝑚𝑝 𝑘
cos 2𝜋 ሶ𝑘 Τ𝑚 𝑀 + 𝑋𝑝ℎ𝑎𝑠𝑒 𝑘

for 𝑚 = 1,… ,𝑀

• The  time series with the trend information added back
𝑥𝑎_𝑛𝑒𝑤 = 𝑥𝑚 + 𝑥𝑡𝑟𝑒𝑛𝑑
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• The measured acceleration signal is 

𝑥𝑣 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑣

• The variable length sequence is

𝑥𝑎 = 𝑥𝑎1, 𝑥𝑎2, 𝑥𝑎3, … , 𝑥𝑎𝑁

• A polynomial function is used for finding trend. 
𝑥𝑡𝑟𝑒𝑛𝑑 = 𝑝 𝑥 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥

2 +⋯+ 𝑐𝑞𝑥
𝑞

• The new acceleration signal without trend  is

𝑥 = 𝑥𝑎 − 𝑥𝑡𝑟𝑒𝑛𝑑

• As considered, the acceleration signal without 
the trend, 

𝑥 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁



HARDWARE VALIDATION
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INTRODUCTION TO FPGA

• FPGA: A field programmable gate array (FPGA) 
• A special kind of chip 

• Used in integrated circuit, silicon device, microchip, computer chip, or any designation 
compatible for programming

• CLB: A configurable logic block (CLB) is the basic 
• Repeating logic resource on an FPGA

• contain smaller components, including flip-flops, look-up tables (LUTs), and 
multiplexers.

• Lookup Tables (LUTs): 
• A basic unit of computation at the heart of configurable logic in FPGAs

• has a single bit output that is calculated based on the input signal values and the 
configurable table (or memory) 

• Digital Signal Processing (DSP) Blocks: 
• Stratix® series FPGAs are an ideal solution for high-performance, high-precision DSP 

applications. 

• very power efficient and operate at far higher frequencies than the equivalent circuits in 
a soft implementation.

• Block RAMs: 
• Larger memories are also a significant resource on FPGAs

• provide several kilobits of memory storage (Xilinx typically makes 18k or 36k available). 
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Basic DSP48E1 Slice Functionality

https://www.rapidwright.io/docs/FPGA_Architecture.html

https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf

https://www.ni.com/documentation/en/labview-comms/latest/fpga-targets/configurable-logic-blocks/

Truth table relationship of a LUT

https://www.rapidwright.io/docs/FPGA_Architecture.html
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.ni.com/documentation/en/labview-comms/latest/fpga-targets/configurable-logic-blocks/


HARDWARE VALIDATION
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Flowchart for data collection and processing during FFT-based forecasting in case of hardware 

implementation.
sampling rate 

(S/s)

FFT size input

(samples)

25600 128 256

512 512 512

256 256 256

128 128 128



HARDWARE CONFIGURATION

• A Kintex-7 70T FPGA housed in a NI cRIO-9035 

• incorporates a CPU running NI Linux Real-Time

• 1.33 GHz Dual-Core CPU

• 1 GB DRAM

• 4 GB Storage

• 8-Slot CompactRIO Controller

• The sampling rate of the hardware system is set from 128 to 
51,200~S/s 

• Internal clock of 24-bit ADC 

• Data stored in the FPGA’s look-up table memory

• The built-in LabVIEW FPGA FFT function has a range of size 
limitations between 8 to 8192 samples.

• Each size of FFT has a latency of cycles from 16 to 16384.
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cRIO-9035 

Kintex-7 70T FPGA



FPGA WORKFLOW

22 https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YHVTCA4&l=en-US

LabVIEW 
FPGA

• Module for designing 
and translating them 
directly to hardware.

Xilinx 
Vivado

• Compilation tools

Bitstream • BitFile generation 
Complete

Hardware

https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YHVTCA4&l=en-US


RESULTS AND DISCUSSION
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SIMULATION RESULTS
• Compared to the higher sampled data 25600 S/s, the prediction accuracy for the lowest sampled data, 128 

S/s, is poor.
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SIMULATION RESULTS (CONTINUE)

• The frequency list reveals that 25600 S/s utilized more frequencies.
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Sample 

rate

(S/s)

RMSE SNR frequency list

25600 0.0017 17.12 50, 70, 100, 210, 220, 240, 260, 

280, -50, -70, -100, -210,-220, -

240, -260, -280

512 0.0019 16.33 50, 70, 100, -50, -70, -100 

256 0.0019 16.18 50, 70, 100, -50, -70, -100 

128 0.0338 0.15 50, 58, 22, 14, 20, 24, -50, -58, -

22, -14, -20, -24 



HARDWARE   VALIDATION RESULTS
• The 512 S/s sampling rate takes greater computation time than other sampling rates.

• This is because the sample rate of 512 S/s is paired with an FFT size of 512; which maximizes the device hardware.

• Device utilization, the signal sampled at 512 S/s uses 96% of the FPGA slices.

• The 25600 S/s required its pairing with reduced FFT sizes to enable its deployment on the chosen FPGA hardware. 
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CONCLUSION
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CONCLUSION

• The current hardware (Kintex-7 70T), only data sampled at 512 S/s is viable for real-time time 
series forecasting of the considered system with a total system latency of 39.05 µs in restoring 
signal.

• A sampling speed of 25600 S/s requires FPGA resources beyond that provided by the chosen 
hardware.

• Future work will investigate the deployment of a hardware-in-a-loop implementation of the 
hardware/software system proposed here.
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