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ABSTRACT

High-rate time series forecasting has applications in the domain of high-rate structural health monitoring and
control. Hypersonic vehicles and space infrastructure are examples of structural systems that would benefit from
time series forecasting on temporal data, including oscillations of control surfaces or structural response to an
impact. This paper reports on the development of a software-hardware methodology for the deterministic and
low-latency time series forecasting of structural vibrations. The proposed methodology is a software-hardware
co-design of a fast Fourier transform (FFT) approach to time series forecasting. The FFT-based technique is
implemented in a variable-length sequence configuration. The data is first de-trended, after which the time series
data is translated to the frequency domain, and frequency, amplitude, and phase measurements are acquired.
Next, a subset of frequency components is collected, translated back to the time domain, recombined, and
the data’s trend is recovered. Finally, the recombined signals are propagated into the future to the chosen
forecasting horizon. The developed methodology achieves fully deterministic timing by being implemented on a
Field Programmable Gate Array (FPGA). The developed methodology is experimentally validated on a Kintex-7
70T FPGA using structural vibration data obtained from a test structure with varying levels of nonstationarities.
Results demonstrate that the system is capable of forecasting time series data 1 millisecond into the future. Four
data acquisition sampling rates from 128 to 25600 S/s are investigated and compared. Results show that for the
current hardware (Kintex-7 70T), only data sampled at 512 S/s is viable for real-time time series forecasting with
a total system latency of 39.05 µs in restoring signal. In totality, this research showed that for the considered
FFT-based time series algorithm the fine-tuning of hyperparameters for a specific sampling rate means that the
usefulness of the algorithm is limited to a signal that does not shift considerably from the frequency information
of the original signal. FPGA resource utilization, timing constraints of various aspects of the methodology, and
the algorithm accuracy and limitations concerning different data are discussed.
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1. INTRODUCTION

Real-time model-based control of active structures operating in high-rate environments requires real-time time
series structural response forecasting. For example, hypersonic, space, and military systems require active
control within the microsecond (µs) timescale as dictated by the dynamics of the system.1 Real-time model-
based control of these structures would enable real-time decision-making that would boost structure survivability
in these extreme environments by modifying mission goals and outputs to changing conditions. According to
Hong et al.,2 the high-rate problem is marked by:

1. significant external load uncertainty;

2. high levels of nonstationarities and heavy disturbances; and

3. produced dynamics from modifications to the system design.

In general, structures that experience high-rate dynamics have acceleration amplitudes higher than 100 gn for a
duration of under 100 ms.

Time series forecasting with high-rate dynamics is difficult as any approach used must be robust enough to
operate with noisy sensor data.3 Time series forecasting is accomplished by examining patterns in a variable
(or the connections between variables) or developing a model and using either the learned pattern or model
to forecast signals into the future. To analyze time series data, it is common practice to divide the monitored
variable into the three categories of trend, nonstationary, and residual.4 Various methods can be used to do
this, including sliding window, smoothing, and autoregressive expectation, which is widely used in forecasting
high-rate dynamic system states, financial turn of events, environmental change, and energy interest.5 When
numerous time series components are present and their interactions need to be taken into account, a multivariate
time arrangement is used.6

The timing requirements driven by µs structural health monitoring were articulated by Dodson et al.1 Based
on the dynamics of the considered “high-rate” class of systems, this work sets a system latency and forecasting
horizon of 1 ms. To expand, the algorithmic work developed in this paper seeks to forecast the dynamic structural
response (i.e. signal) 1 ms into the future while completing all required computations within a latency of 1 ms. To
enable deterministic and low-latency time series forecasting of nonstationary signals, an FFT-based forecasting
approach was developed that was implemented on a Field Programmable Gate Array (FPGA).

This study outlines the development of an online structural vibration time series forecasting hardware/software
system.7 The FFT-based forecasting technique is employed in this study and is implemented in a variable-length
sequence configuration. After the data has been de-trended, it is translated into the frequency domain and
measurements of frequency, amplitude, and phase are made. The data’s trend is then retrieved by gathering a
selection of frequency components, translating them back into the time domain, and recombining them. The

Figure 1. Setup for an experimental cantilever beam including main components and data acquisition.

Proc. of SPIE Vol. 12483  1248316-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 02 May 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 2. Data set with varied sample rates, showing: (a) the native sample rate of 51200 S/s; (b) sub-sampled at 25600
S/s; (c) 512 S/s; (d) 256 S/s; (e) 128 S/s; and inset plots provide a close look around nonstationary for each sampled
data.

signals are extended into the future to the selected forecasting horizon at this point. The proposed methodology
is experimentally evaluated on a Kintex-7 70T FPGA using structural vibration data from a test structure with
varying levels of non-stationaries.8 Four data collection sampling rates, ranging from 128 to 25600 S/s, are
examined and compared.

Results show that the system can forecast time series data within the 1 ms latency constraint. However, it
needs to be noted that a key challenge of FFT-based time series forecasting is that the periodicity of the time
series signal must be properly considered. There must be sufficient perceptions of a period arrangement that may
need to be processed as whole components (not partial cycles). To expand, there are challenges when trying to
forecast a period signal when considering anything other than full periods of the signal that initiate and terminate
as the zero-crossing. The contributions of this work are two-fold, 1) An experimental investigation showing the
potential of the FFT-based time series forecasting methodology for high-rate signals, and 2) a detailed discussion
of the periodicity challenge for FFT-based time series forecasting.
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2. METHODOLOGY

This section describes the experimental testbed, experimental data, and the formulation of the FFT-based
forecasting methodology.

2.1 Experimental Testbed

Figure 1 displays the experimental configuration used to develop experimental data for this work. The beam is
excited by an electromagnetic shaker (model V203R manufactured by LDS), with a useful frequency range of
5-13000Hz and a peak sine force of 17.8N, and is driven by a power amplifier (model PA25E-CE manufactured
by LDS). A 45 N load cell (model MLP-10 manufactured by Transducer Techniques) is mounted in-between
the shaker and beam structure. A 24-bit bridge input signal conditioner (NI-9237 manufactured by National
Instruments) is used to acquire the load-cell data. The experiment is run through a control computer with a
Virtual Instrument written in LabVIEW.

Figure 2 reports the structure’s measured acceleration response (xv) for a composite sinusoidal input from
the shaker. In this work, the composite signal is made up of 50, 70, and 100 Hz sinusoidal signals. Two sine
wave signals are concatenated together at t=5 s where a nonstationary is present due to a change of frequency.
To achieve this, an input signal of 0.25 V is used before t=5 s while a signal of 0.25 V is used after t=5 s. The
first half of the composite signal is built from 50, 70, and 100 Hz frequencies while the second half signal consists
of 50 and 100 Hz frequencies. Four different sampled data were created from this data and Figure 2 shows all of
that including zoomed section near by nonstationary event. The original sampling rate of the data is displayed
in figure 2 (a). This data is available in a public repository8

2.2 Algorithm Formulation for FFT-based Forecasting

Figure 3. Schematic Algorithm diagram of FFT-based time series forecasting algorithms.

Figure 3 diagrams the algorithm used in this work for periodic structural vibration forecasting. The signal
of observed acceleration is xv = (x1, x2, x3, . . . , xV ) where V is the total sample points in the observed signal.
A variable length sequence, xa of size, N moves forward through time as time progresses. By applying the FFT-
based time series forecasting method, a signal is generated that is M points long where M > N . The difference,
(M −N) presents the length of the forecasting horizon. By determining N and M , this method can be applied
to achieve a predicted signal of desirable length. The variable length sequence is xa = (xa1, xa2, xa3, . . . , xaN ).
The first step is to remove any trend line from the acceleration xa. To do this, a polynomial function is used
where

xtrend = p(x) = c0 + c1x+ c2x
2 + · · ·+ cqx

q (1)

and q is the degree of the polynomial and c is a set of coefficients. In this work, q = 1. After removing the
trend, the new acceleration signal without trend is x = xa − xtrend which has the same sample size as N . As
considered, the acceleration signal without the trend, x = (x1, x2, x3, . . . , xN ), is a time series of N -samples
that the frequency content is extracted from.9 Therefore, the discrete Fourier transform (DFT) of that series
can be expressed as

Xk =

N−1∑
n=0

xne
(−i2π(kn/N)) for k = 0, . . . , N (2)
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where,

ω = 2π/N = 2πf (3)

(Xamp)k = |Xk| (4)

(Xphase)k = Xk/|Xk| (5)

Similarly, the inverse DFT can be written as

xn =
1

N

N−1∑
k=0

Xke
(i2πkn/N) for n = 0, . . . , N (6)

Now, consider a new series of M length where M > N . Using amplitude and phase information, the time series
can be constructed and written as

xm =

M−1∑
k=0

((Xamp)k ˙cos(2π(km/M)) + (Xphase)k) for m = 1, . . . , M (7)

The xm time series with the trend information added back can be expressed as

xa new = xm + xtrend (8)

The FFT-based algorithm works best when the waveform is not interrupted. Let’s say a signal is embedded
with 1 Hz, 5 Hz, and 10 Hz frequencies. Now if an acquisition (learning) window of 1.5 seconds in length is
considered, then all of these waveforms are cropped. In FFT, the time domain and frequency domain maintain
the circular topologies. So, the two endpoints of input length are assumed to meet at the same point. But this
is not true for this example. That’s why it is necessary to ensure that the acquisition length considered for
FFT must contain the integer number of periods. In a non-stationary signal, it is not possible to have all the
embedded signals with different frequencies start at the same time. So, even taking a 1-second window cannot
solve the situation. When the input length is shorter than the period of the lowest frequency component of the
signal, periodicity in the predicted signal develops. However, when the input length exceeds the base period in
the signal, the periodicity in the predicted signal is removed. Therefore, to capture this frequency, the minimum
learning window length needs to be twice the period of the signal, per the Nyquist Theorem. For accurately
capturing all the frequencies, the minimum period should be higher than the Nyquist limit.

2.3 Hardware Validation

While implementing any algorithm in FPGA hardware is a challenge, the FFT-based forecasting approach is a
relatively simple algorithm making it well-suited for hardware implementation. In this work, hardware validation
is done on a Kintex-7 70T FPGA housed in a NI cRIO-9035 that also incorporates a CPU running NI Linux Real-
Time. Figure 4 diagrams how data is collected and processed on the FPGA, as well as how data is transmitted
through parallel FFT-based forecasting. The sampling rate of the hardware system is set from 128 to 51,200 S/s
and is restricted to intervals of the internal clock of the 24-bit ADC used in this project. Data is passed from the
DAQ to FIFO and stored in the FPGA’s look-up table memory. From FIFO through a for-loop data is going to

Figure 4. Flowchart for data collection and processing during FFT-based forecasting in case of hardware implementation.
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Figure 5. Simulation outcomes of forecasting at various sample rates, showing: (a) 25600 S/s; (b) 512 S/s; (c) 256 S/s;
and (d) 128 S/s.

the FFT process. The next step is collecting specific frequencies to make more accurate forecasting and finally
restoring the signal which is equivalent to 1 ms into the future is produced. The FFT process includes different
steps like measuring real and imaginary, measuring phase, and measuring amplitude.

Table 1. FFT size and input length for different sampled data in hardware implementation.

sampling rate
(S/s)

25600 512 256 128

FFT size 128 512 256 128

input
(samples)

256 512 256 128
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In this work, the LabVIEW FPGA development environment was used for developing the FPGA hardware
designs, before being converted to a bitstream file through a Xilinx/Vivado workflow. The built-in LabVIEW
FPGA FFT function has a range of size limitations between 8 to 8192 samples. Each size of FFT has a latency
of cycles from 16 to 16384. For each sample rate, the goal was to pass a second of data to the FFT. However,
due to hardware restrictions related to the chosen Kintex-7 70T FPGA, at the higher sampling rate of 25600
S/s the FPGA design could not meet timing requirements. Therefore, as shown in table 1, the FFT size and
number of inputs are constrained for the sampling speeds of 25600 S/s. As a result, for subsequent research, only
sampling data with a speed range of 128 to 25600 S/s is taken into consideration. The investigation of algorithm
deployment on larger hardware is left to future work.

Table 2. For various sampling data, simulation outputs including foretasted signal RMSE, SNR, and chosen frequencies.
sampling rate

(S/s) RMSE SNR frequency list

25600 0.001727 17.12 50, 70, 100, 210, 220, 240, 260, 280, -50, -70, -100, -210,-220, -240, -260, -280

512 0.001889 16.33 50, 70, 100, -50, -70, -100

256 0.001911 16.18 50, 70, 100, -50, -70, -100

128 0.033853 0.15 50, 58, 22, 14, 20, 24, -50, -58, -22, -14, -20, -24

3. RESULTS

Figure 5 reports on the time series forecasting for four different sampling rates. Note that the native sampling
rate of 51200 S/s is not shown for brevity as it performs similarly to 25600 S/s. Compared to the higher sampled
data, the prediction accuracy for the lowest sampled data, 128 S/s, is poor. Note the significant drop-off in the
algorithm’s capabilities between 256 S/s and 128 S/s; which demonstrates that 256 S/s is the lower limit in terms
of forecasting capabilities due to the loss of the higher frequency content in the signal down-sampled to 128 S/s.

Table 2 shows the frequencies used in reconstructing the signal and reports the RMSE and SNR for the four
considered sampling speeds. The average difference between values predicted by a model and the actual values
is measured by the Root Mean Squared Error (RMSE). The ratio of a signal’s (valid) power to background noise
(error) is known as the signal-to-noise ratio (SNR). Here, signals are expressed using the logarithmic decibel
(dB) scale as the signals considered have a wide dynamic range. In contrast to other speeds such as 128 S/s,
the frequency list reveals that 25600 S/s utilized more frequencies. When data is sampled at faster speeds, more
frequency-rich information is gathered, allowing for frequencies to be used in the reconstruction of the signal.
Due to this, the algorithm is considered useless at the lowest sampling speed of 128 S/s. Figure 6 reports the
same RMSE and SNR data but in a graphical format, showing how values change in response to changes in the
sampling speed.

Figure 6. Effects of variously sampled data from simulation results, showing: (a) RMSE; and (b) SNR.
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Figure 7. Results of the hardware validation procedure for varied sampled data in cases of (a) computation time required;
and (b) device utilization.

Figure 7 shows the required computation time and device utilization for different intermediate steps of
hardware implementation. The 512 S/s sampling rate takes greater computation time for various intermediate
hardware implementation phases than other sampling rates, as seen in figure 7(a). Moreover, the larger the FFT
size as defined in table 1, the larger the latency. This is the reason that the smallest sampled data 128 S/s
has the lowest computation time, despite its forecasting results being completely unusable. Device utilization is
shown in figure 7(b) and experiences the same situation where the faster sampling rates generally require more
FPGA resources. Note that for device utilization, the signal sampled at 512 S/s uses 96% of the FPGA slices,
signifying that a sample rate of 512 S/s, along with an FFT size of 512 samples (see table 1) is effectively the
largest useful implementation of the FFT-based time series forecasting algorithm that can be deployed on the
considered hardware (Kintex-7 70T).

Table 3. Time required for different aspects of FFT-based forecasting.

sampling rate
(S/s)

input
(samples)

data input FFT process collect specific frequency restore signal

ticks
microsecond

(µs)
ticks

microsecond
(µs)

ticks
microsecond

(µs)
ticks

microsecond
(µs)

25600 256 1 0.025 2305 57.625 15717 392.925 802 20.05

512 512 1 0.025 7679 191.975 38502 962.55 1562 39.05

256 256 1 0.025 3584 89.6 18789 469.725 802 20.05

128 128 1 0.025 1792 44.8 9445 236.125 410 10.25

Table 3 illustrates that all data sampling speeds require the same amount of time for the data input step of
0.025 µs. An important outlier to note is that the sampling speed of 512 S/s requires the most time with a total
latency of 39.05 µs in case of restoring signal. This is because the sample rate of 512 S/s is paired with an FFT
size of 512; which maximizes the device hardware. In comparison, the higher sampling rates of 25600 required
its pairing with reduced FFT sizes to enable its deployment on the chosen FPGA hardware.
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Table 4. Device utilization for FFT-based forecasting where FPGA elements are shown by device utilization.

sampling
rate
(S/s)

total
slice

slice
registers

slice
LUTs

block
RAMs

DSP48s

slices
used

slices
available

% used
slices
used

slices
available

% used
slices
used

slices
available

% used
slices
used

slices
available

% used
slices
used

slices
available

% used

25600 7377

10250

72 28321

82000

34.5 17728

41000

43.2

75 135 55.6

46

240 19.2
512 9837 96 40052 48.8 20688 50.5 46

256 7220 70.4 28320 34.5 17716 43.2 46

128 5999 58.5 21663 26.4 15802 38.5 46

Table 4 shows that the device utilization for DSP48s and block RAMs remains constant across all data. Except
for this, every other FPGA component shows a considerable amount of variance depending on the sampling rate
of the data.

4. CONCLUSION

This work describes the creation of a hardware/software system for real-time structural vibration time series
forecasting. The suggested method makes use of a forecasting algorithm based on FFT. While any algorithm is
difficult to implement in FPGA hardware, the straightforward nature of this technique makes it less complicated
for hardware implementation. The FFT-based approach collects, processes, and extends the chosen frequencies to
the forecast horizon. In FFT, the circular topologies are maintained in both the time domain and the frequency
domain. Thus, it is assumed that the input length’s two ends match. Because of this, it is essential to make
sure that the acquisition duration taken into account for FFT must include an even number of periods that start
and stop at zero. Results show that for the current hardware (Kintex-7 70T), only data sampled at 512 S/s is
viable for real-time time series forecasting of the considered system with a total system latency of 39.05 µs in
restoring signal. While a sampling speed of 256 S/s shows usefulness, a sampling speed of 25600 S/s requires
FPGA resources beyond that provided by the chosen hardware. Lastly, the FFT-based time series algorithm
itself completely falls apart for a sampling speed of 128 S/s. In totality, the tuning of hyperparameters for the
FFT-based time series algorithm and its deployment onto FPGA hardware was found to be finicky and laborious
while being tied to a signal within a limited frequency bandwidth. Future work will investigate the deployment
of a hardware-in-a-loop implementation of the hardware/software system proposed here.
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