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MOTIVATION



HIGH-RATE STRUCTURAL HEALTH MONITORING

• Health monitoring of structures operating in high-rate dynamic 
environments behavioral interventions in response external 
stimuli. 

• Examples of structures operating in high-rate dynamic 
environments include:

• hypersonic vehicles
• space craft
• ballistic packages

• Intelligent reactions require an up-to-date model of the 
structure’s state.

3



STRUCTURES EXPERIENCING HIGH-RATE DYNAMIC EVENTS

Applications:

1. Vehicle collision

2. Blast mitigation

3. Ballistic packages

4. Hypersonic vehicles

5. Hard Target Penetrating Weapons

Hypersonic VehiclesBallistics Packages

Active Blast MitigationVehicle Collision

Hard Target Penetrating Weapons
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HIGH-RATE STRUCTURAL HEALTH MONITORING

• Due to the timescale of relevance to 
these structures means that the 
model must be continuously updated 
with a time step of 1 millisecond or 
less. 

• However, traditional frequency-based 
methods for updating the finite 
element model online require solving 
the generalized eigenvalue problem a 
computationally expensive process. 

Automotive impact and crashes

High Speed aircraft and airframes
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BACKGROUND



Real-Time Model Updating Through Error Minimization
A frequency-based model updating technique was developed to update an FEA model of the system. 

Downey A., et al,. “Millisecond Model Updating for Structures Experiencing Unmodeled High-Rate Dynamic Events” Mechanical Systems and Signal 

Processing 138, 2020
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Background: Modal Analysis

Modal analysis is used to find the mode shapes and frequencies of a structure during free vibration.

Starting with the equation of motion:

the damping coefficient can be ignored as 

its effect on the natural frequency is less 

than 0.0005%, resulting in the expression:

assuming a temporal solution:

yields the following expression: 

where q
n
(t)=0 is a trivial solution, therefore 

the eigenvalues and eigenvectors are 

solved for using the general eigenvalue 

problem formulation:

where:

and:

TIME CONSUMING

COMPETITION
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WHY A LIVE MODEL UPDATE

• The logical consideration is that solving for the position at all will 
always be slower than a look up table

• Model Updating holds promise for:
• 2D systems such as thin plates
• Multiple sequential modifications such as crack progation or multi 

damage sources

• The look up table would grow impractically large as the 
dimensionality of the problem increases as pre-calculated 
solutions are required every potential case and its branching 
evolutions
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LEMP usage in the ‘70s and ’80s

LEMP enabled these calculations to be done very efficiently 

on very slow desktop computers.

• Structural Measurements Systems (SMS) sold a custom 

hardware and software setup. 

• This was before the “personal computer” stage.

All images and knowledge curtesy of Peter Avitabile Professor Emeritus, Co-Director - Structural 

Dynamics & Acoustic Systems Laboratory at the  University of Massachusetts Lowell

SMS modal software 

called SDM used LEMP

HP3000 desktop running “Rocky Mountain BASIC”

HP1000/A700 w/DIFA modal analysis system

HP5423 first dedicated 

FFT/Modal system - 1979
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LEMP

• The Local Eigenvalue Modification Procedure (LEMP) is put 
forward to accelerate the extraction of natural frequencies from 
finite element models updated online.

• LEMP:
1. presolve for the eigenvalue solution to a reference state of the system

2. computes the single (i.e., local) change in the modal domain from the 
reference state to the current state online. The modal domain update 
in the local eigenvalue modification procedure bypasses the general 
eigenvalue problem, which is the most expensive computational step.
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Changing States

• LEMP models one change in 

the system at a time.

• Still need to solve the GE 

problem once, then it can be 

updated with each successive 

step.

Initial State:

Altered State:
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Single-State Change Estimation using LEMP
LEMP requires:

• Initial state general eigenvalue solution.

• Construct the elemental mass and stiffness 

matrices (𝐌1 and 𝐊1).

• Solve the general eigenvalue problem to obtain 

the squares of the first n natural frequencies, 

and the first n modal vectors for the initial state.

Initial state of the 

system (beam). 

Initial state of the system (beam). 
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n independent single DOF systems representing the initial state

Coupled single DOF systems representing the altered state

Local Eigenvalue Modification Procedure (LEMP)

Modification
Initial 

State
Altered 

State

Physical 

Space

‘n’

Physical

DOF

𝐌2 , 𝐊2𝛥𝐌12 , 𝛥𝐊12𝐌1 , 𝐊1

Modal 

Transformation
m<<n𝑥 = 𝑈2 {𝑝2}𝑥 = 𝑈1 {𝑝1}

Modal 

Space

‘m’

Modal

DOF

𝛺2
2 , 𝑈2𝑝1 = 𝑈12 {𝑝2}𝜔1

2 , 𝑈1

Solved using Divide 

and Conquer method

Avitabile, P., “Twenty Years of Structural Dynamic Modification- A Review,” Sound and Vibration, pp. 14-25. 2003

Drnek, C. R., “Local eigenvalue modification procedure for real-time model updating of structures experiencing high-rate dynamic events,” (2020). 
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Real-time Secular Equation Solver
To solve LEMP, we need to find Ω2, or the roots of our secular equation. We do this with a 6-

step divide and conquer method.

Mode Eigenvalues (D&C) Eigenvalues (Solveset) Error

1 293496.95719048503 293496.95719048500 58.21 x 

2 13405184.4772621 13405181.1772621 33.00 x 

3 33185211.781733 33185095.485877 11.63 x 

4 101330615.342713 101330615.250119 92.59 x 

5 69856604350042.539 69856604350042.500 39.06 x 

Step 1: Adding roller condition

Step 2: Spectral decomposition of ∆K12

Step 3: Set truncation: include only contributing nodes

Step 4: Obtain Ω2 using Divide and Conquer

Step 5: Solve for new frequencies

Step 6: Update roller position

Code for SPIE conference paper at: https://github.com/ARTS-

Laboratory/Paper-Development-of-a-Real-time-solver-for-the-

Local-Eigenvalue-Modification-Procedure
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PREVIOUS WORK



DROPBEAR

• Dynamic Reproduction of Projectiles in Ballistic Environments 
for Advanced Research (DROPBEAR) testbed
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DROPBEAR experimental testbed:

• The Dynamic Reproduction of Projectiles in 

Ballistic Environments for Advanced 

Research (DROPBEAR) was used to 

generate the experimental data in this work.

• Cantilever beam with a controllable roller to 
alter the state.

• Acceleration and pin location are recorded.

• Dataset available on GitHub at: 
https://github.com/High-Rate-SHM-Working-
Group/Dataset-2-DROPBEAR-Acceleration-
vs-Roller-Displacement

DROPBEAR
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https://github.com/High-Rate-SHM-Working-Group/Dataset-2-DROPBEAR-Acceleration-vs-Roller-Displacement
https://github.com/High-Rate-SHM-Working-Group/Dataset-2-DROPBEAR-Acceleration-vs-Roller-Displacement
https://github.com/High-Rate-SHM-Working-Group/Dataset-2-DROPBEAR-Acceleration-vs-Roller-Displacement


CYBER PHYSICAL EQUIVALENT

Accelerometer
Rolling pinned condition

Position sensor
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ALGORITHMIC TIMING TARGETS
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PERFORMANCE: TIMING OUTSIDE THE LOOP

General Eigenvalue Solver Local Eigenvalue Modification Procedure
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DATA FUSION



Real-Time Model Updating Through Error Minimization
A frequency-based model updating technique was developed to update an FEA model of the system. 

Downey A., et al,. “Millisecond Model Updating for Structures Experiencing Unmodeled High-Rate Dynamic Events” Mechanical Systems and Signal 

Processing 138, 2020

24



Real-Time Model Updating with data fusion techniques
A frequency-based model updating technique was developed to update an FEA model of the system. 

Downey A., et al,. “Millisecond Model Updating for Structures Experiencing Unmodeled High-Rate Dynamic Events” Mechanical Systems and Signal 

Processing 138, 2020
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SAMPLING

Four sampling methods are used 
for selecting an appropriate
roller location on which LEMP is 
applied for roller location
estimation.
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KALMAN FILTER
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NORMALIZED INNOVATION ERROR SQUARED 

Consistency ensures two desirable properties in a 
Kalman filter: 

(i) the filter is ‘aware’ of how wrong it could be

(ii) the filter blends the right amount of information from 
its process model and measurements to recursively 
correct its state estimate
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NORMALIZED INNOVATION ERROR SQUARED 

We assume Rk and Hk ( measurement and process noise 
matrices) to be close to the actual noise of the 
measurement and the process however, model can be 
mismatched. 

In this case, we seek to satisfy the weaker condition of 
covariance consistency. 
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NORMALIZED INNOVATION ERROR SQUARED 

Sk and Pk (innovation and process covariace) of the 
chosen model should be consistent with the Rk and Hk

(measurement  and process noise) 
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NORMALIZED INNOVATION ERROR SQUARED 

These conditions can be assessed by examining the 
normalized scalar magnitudes of the random variable 𝜖z,k

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 𝑠𝑞𝑢𝑎𝑟𝑒𝑑
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NORMALIZED INNOVATION ERROR SQUARED 

𝜖z,k is a 𝜒2 random variable with and n degrees of 
freedom where n is the number of measurements made 
of the system
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NORMALIZED INNOVATION ERROR SQUARED 

In conclusion IF you:

1. Suspect the sensor to be faulty infrequently, outside of 
explanations of noise (i.e. 1/1000 chance of reading max or 
min voltage, clear outliers)

2. Expect the innovation covariance (Sk) to be explanatory of the 
measurement prediction error ( ෤𝑦k )

THEN rejecting the a posteriori update step a when the NIS is 
exceeds the confidence interval will effectively ignore likely 
sensor faults
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NORMALIZED INNOVATION ERROR SQUARED 
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Closest measured truth of system state (~X):

Measurement of system state (Y):

Ground truth of system state (X):

ሶ𝑥 = 𝐴𝑥 + Ω𝑝

𝑦 = 𝐶𝑥 + Ω𝑚

Assumed to be Constant Velocity Model:

MODELING
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𝑥𝑘 = 𝐴𝑥𝑘−1 + Ω𝑝

𝑦𝑘 = 𝐶𝑥𝑘 + Ω𝑚

Discrete Constant Velocity Model:

MODELING

Where we assume that between the (k − 1) and k timestep, 
uncontrolled forces cause a constant velocity  

𝑥 =
𝑝
𝑣

, 𝐴 =
1 Δ𝑡
0 1

, 𝐶 = [1 0]
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RESULTS



METRICS

SNR compares the level of a desired signal to the level of background noise 
measured in Decibels (dB)

TRAC is a method that quantifies between zero and one the similarity 
between two signals in time 
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SAMPLING 

Estimation results 
obtained using LEMP with 
a 21-node and 101-node 
model of the beam and 
the previously investigated 
Gaussian sampling 
technique without the use 
of a Kalman filter; termed 
the “base state”.
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BASE STATE

Estimation results obtained 
using LEMP with a 21-node 
and 101-node model of the 
beam and the previously 
investigated Gaussian 
sampling technique without the 
use of a Kalman filter; termed 
the “base state”.
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21-NODE MODEL

State estimation results on a 21-node 
model of the beam with LEMP in the 
filtered and unfiltered configuration 
where Bayes inference, Likelihood 
ratio test, Metropolis-Hasting 
Algorithm, and Gibbs sampling are 
used to sample roller location.
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21-NODE MODEL

Roller position estimation using a 21-
node beam model for 

(a) LEMP estimate with no sampling 
or Kalman filter methodology 

(b) LEMP estimate where roller 
positions are sampled using 
Bayesian search space

(c) improved LEMP estimate where 
roller positions are sampled using 
the Bayesian search space and 
filtered with the Kalman filter.
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101-NODE MODEL

State estimation results on a 101-
node model of the beam with LEMP 
in the filtered and unfiltered 
configuration where Bayes inference, 
Likelihood ratio test, Metropolis-
Hasting Algorithm, and Gibbs 
sampling are used to sample roller 
location.
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RESULTS

Average percentage 
improvement in SNRdB

compared to estimation 
without sampling and 
Kalman filter at 21 and 
101 nodes for three 
particle models over 100 
trials.
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CONCLUSION



CONCLUSION

• The study found that the likelihood ratio test alongside the linear Kalman 
filter effectively produced accurate results, with an ~17% increase in 
accuracy for a 21-node model of the considered structure. 

• The study also highlighted the importance of filtering outliers, as 
demonstrated by using the Normalized Innovation Squared (NIS) metric. 

• This study successfully improved accuracy over the previous model 
updating methods, especially for lightweight models with low node counts 
on all the methodologies tested. 
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FUTURE WORK

In future studies, the methodology would be expanded to include two-
dimensional analysis and sequential damage cases, emphasizing the need 
for intelligent model selection and outlier filtering.
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