Machine Learning-based Load Monitoring, Fault Detection, and Network
Reconfiguration in Next Generation Shipboard Power Systems
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Background and Research Objectives

* Rapid growing electricity consumption in modern navy ships.

 Complexity of energy management in Navy ships and growing interest in using unmanned surface
vessels for long duration voyages.

* Potential risks of cyber/physical attacks to naval power systems.

e Utilizing future navy ships to assist the operation of power distribution grids, to enhance the reliability
and resilience of power grids and the economic efficiency of the power networks.

* The overarching objective of this project is to:

- Study the energy management and fault detection of the Navy power ship systems, by utilizing
deep learning-based techniques to track the demand changes with real-time interactions and
enhance the reliability and resilience of the Navy ships.
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Research thrusts

Normal to extreme
working conditions

Extreme to normal
working conditions
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Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands

Pulsed Loads

Some unique loads will be added
to SPS (e.g., laser weapons), and
these loads can make future SPS
more complex.

Generation

Future SPS needs more
generation capacity
due to the constantly
increasing demand.

Energy Storage
System

Future SPS will leverage
energy storage systems
to improve the energy
efficiency and response
to pulsed loads.

Integrated Power and
Energy System

Integrated power system provides
~¥ electric power to the total ship
(propulsion and ship service) with
an integrated plant.

Power Conversions

Future SPS uses more
power electronic-based
converters to meet the
vast variety range of
electric demands.

Ship to Grid Connection

Future SPS will have more
interaction with terrestrial power
network to charge/discharge the
energy storage system and help
improve the grid operation and
resilience.

Design and Optimization of Energy Systems (DOES) Laboratory The University of Texas at Dallas



Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands

Enormous

number of

sensors and
components

Onboard
Supervisory

Unique Loads

Efficient Non-
intrusive Load
Monitoring
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Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands

e Steady-State Quantities Methods
 Use steady state quantities, such as active and reactive power in steady state.

» Estimate the ON/OFF status and the power consumption of each component.
e \Voltage variations from external sources may cause overlap for different components in the P-Q

plane.
 The biggest concern on this type of method is the lack of ability to follow the transients.

* Dynamic Performance Methods

* Focus more on dynamic performance, which is capable of following both steady state and
transient load signals.

* Use signal processing methods such as short-term Fourier transform (STFT) and discrete wavelet
transform (DWT) approach for feature extraction.

* Have the capability to detect small load changes through extracted features.

* High computational burden for performing feature extraction and real-time signal disaggregation
algorithms.
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Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands

* A complete simulated dataset created that consists of power consumption of different devices on
the MVDC shipboard power system (SPS).

* Wavelet transform is used for feature extraction from aggregated current signals.
» different deep learning-based models for non-intrusive load monitoring (NILM) in the SPS. The
models show high accuracies in detecting different devices based on an aggregated current signal.
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Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands
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Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands

Amplitude

2000

1000 -

o

-1000 -

-2000
0

200 Samples of Generator Current

dais swi|

2000

\\ 1000

DWT

Amplitude
o

-1000

-2000
0

Approximate Coefficients

50 100 150 200
Sample
Detail Coefficients

Amplitude

Current sample
Approx. 4

50 100 150 200
Sample

/Class 0-15\
Class 0-15
Class 0-15

Class 0-15
N _J

The University of Texas at Dallas

Design and Optimization of Energy Systems (DOES) Laboratory



Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands

A complete simulated dataset is created, consisting of power consumption of different devices with an
MVDC shipboard power system (SPS).

* Wavelet transform is adopted for feature extraction from aggregated current signals.
e Different deep learning-based models have been developed for NILM in the SPS.
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Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands
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Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands

Accuracy of the NILM for the propulsion system (Percentage)

Wavelet-DNN 52.42 51.96 1.199
Wavelet-LSTM 82.3 78.96 0.455
Wavelet-CNN 90.08 89.23 0.241

Accuracy of the NILM for the zonal components (Percentage)

Wavelet-DNN 54.38 54.19 1.66
Wavelet-LSTM 84.24 82.19 0.452
Wavelet-CNN 98.62 98.14 0.0437
Pl = 2 x precision X recall m
precision + recall Fl-score 99
TP TP Precision 98.5
precision = TP+ FP ,recall = TP+ FN Recall 99 6
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Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands

Confus matrix for zonal components Confusion matrix for propulsion system
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Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands

Average Accuracy of WCNN NILM for each class
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Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands

Conclusion
= Three deep learning-based models, including Wavelet-DNN, Wavelet-LSTM, and Wavelet-CNN, were
developed for non-intrusive load monitoring in MVDC shipboard power systems.

= Discrete wavelet transform has a great capability to detect pulsed loads in aggregated current signals.
» The wavelet-CNN method can detect the On/Off status of components with 98% accuracy.

= The CNN model is more compatible with the wavelet output decomposition matrix than the DNN and
RNN methods.

= The wavelet-CNN method has an acceptable accuracy and F1-score in detecting pulsed loads On status.

Outcomes

= S. Senemmar and J. Zhang, "Non-intrusive Load Monitoring in MVDC Shipboard Power Systems using
Wavelet-Convolutional Neural Networks," 2022 IEEE Texas Power and Energy Conference (TPEC), College
Station, TX, USA, 2022, pp. 1-6, doi: 10.1109/TPEC54980.2022.9750745.

= S. Senemmar and J. Zhang, "Convolutional Wavelet Neural Network Based Non-Intrusive Load Monitoring
for Next Generation Shipboard Power Systems," Engineering Applications of Artificial Intelligence
Journal(Under Review).
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Research Thrust II: Faults Detection, Isolation and Service Restoration

Fault scenarios and Deep learning
simulations models

SPS Model
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Research Thrust ll: Faults Detection, Isolation and Service Restoration

Overcurrent protection Distance protection Current differential
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Research Thrust ll: Faults Detection, Isolation and Service Restoration

 Wavelet Transform-based Graph Neural Network (WGNN) for non-intrusive fault detection,
classification, and location identification of SPS are designed and tested.

* A model of 4 Zone MVDC shipboard power system is used to investigate the effectiveness of the
models.

* Fault scenarios are simulated at each zone. Then, WGNN model is trained and tested based on the
voltages and currents signals.

* The results show that deep WGNN model can detect the faults, fault types, and fault locations very
accurately and faster than conventional methods.
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A
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SIP ITElEl Fault tielizEes A WGNN model The accuracy
based on ) currents Data . :
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Research Thrust Il: Faults Detection, Isolation and Service Restoration
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Research Thrust ll: Faults Detection, Isolation and Service Restoration

e Case l: Intrusive fault detection
e Case ll: Non-intrusive fault detection
e Case lll: Non-intrusive fault detection with pulsation load

Training Accuracy Testing Accuracy Testing Loss

Case | 99.99% 0.225e-4 99.99% 7.0le-4
Casel ll 97.26% 0.0851 97.70% 0.0392
Case lll 94.44% 0.1392 95.23% 0.1180
Case | Case ll Case lll
Confusion Matrix Confusion Matrix Confusion Matrix

True labels
True labels
True labels
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Research Thrust ll: Faults Detection, Isolation and Service Restoration
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Research Thrust Il: Faults Detection, Isolation and Service Restoration
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Research Thrust Il: Faults Detection, Isolation and Service Restoration
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Research Thrust Il: Faults Detection, Isolation and Service Restoration

Performance of the learning networks during Test phase Performance durmg Training
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Research Thrust Il: Faults Detection, Isolation and Service Restoration

e HIL simulation involves dedicated hardware, such as FPGA-based simulators, to achieve
high-speed and low-latency real-time simulation.

* OPAL-RT systems are commonly used for testing and validating control systems in power
systems.

* OPAL-RT real-time simulation has high
fidelity and low-latency performance;
thus, it can provide extremely accurate
and deterministic simulation results in
real-time.

WORKSTATION REAL-TIME SIMULATOR ACTUAL SYSTEM

L Controllers, Protective Relays )

The University of Texas at Dallas
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Research Thrust Il: Faults Detection, Isolation and Service Restoration
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Research Thrust Il: Faults Detection, Isolation and Service Restoration
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Research Thrust Il: Faults Detection, Isolation and Service Restoration

Schematic of outage management in an example SPS network with

main and auxiliary generators, and sectionalizing/tie switches.
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Research Thrust Il: Faults Detection, Isolation and Service Restoration
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Research Thrust Il: Faults Detection, Isolation and Service Restoration

Conclusion

= Wavelet Graph Neural Network (WGNN) was developed for fault detection, classification, and
location identification in MVDC shipboard power systems.

= The fault detection methods can detect the faults with more than 99% and 97% accuracy in intrusive
and non-intrusive modes, respectively.

= With a -5 dB signal-to-noise ratio, the models still have approximately 85% accuracy, while
conventional methods can severely lose their accuracy.

Outcomes

= S. Senemmar and J. Zhang, "Deep Learning-based Fault Detection, Classification, and Locating in
Shipboard Power Systems," 2021 IEEE Electric Ship Technologies Symposium (ESTS), Arlington, VA, USA,

= R. A. Jacob, S. Senemmar and J. Zhang, "Fault Diagnostics in Shipboard Power Systems using Graph
Neural Networks," 2021 IEEE 13th International Symposium on Diagnostics for Electrical Machines,
Power Electronics and Drives (SDEMPED), Dallas, TX, USA, 2021, pp. 316-321,

= S. Senemmar, R. A. Jacob and J. Zhang, " Non-Intrusive Fault Detection in Shipboard Power
Systems using Wavelet Graph Neural Networks," Measurement Energy (to be submitted).

Design and Optimization of Energy Systems (DOES) Laboratory The University of Texas at Dallas



Questions

f'nllurll

Bl:lﬂf

tatistical
Ila tex 4

:ﬁ:.mm 3

multldlsclplmaryEE

iochastic

ewlgwﬂm uglmmml approximation
desm mm e Mfﬂéiﬁ‘aiél“m
optimization”

pll“‘ﬂl' recarsive strutural

£

i
£
-

Design and Optimization of Energy Systems (DOES) Lab

The University of Texas at Dallas



	Slide Number 1
	Background and Research Objectives
	Research thrusts
	Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands
	Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands
	Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands
	Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands
	Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands
	Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands
	Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands
	Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands
	Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands
	Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands
	Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands
	Research Thrust I: Monitoring and Tracking Navy Ship Electricity Demands
	Research Thrust II: Faults Detection, Isolation and Service Restoration 
	Research Thrust II: Faults Detection, Isolation and Service Restoration 
	Research Thrust II: Faults Detection, Isolation and Service Restoration 
	Research Thrust II: Faults Detection, Isolation and Service Restoration 
	Research Thrust II: Faults Detection, Isolation and Service Restoration 
	Research Thrust II: Faults Detection, Isolation and Service Restoration 
	Research Thrust II: Faults Detection, Isolation and Service Restoration 
	Research Thrust II: Faults Detection, Isolation and Service Restoration 
	Research Thrust II: Faults Detection, Isolation and Service Restoration 
	Research Thrust II: Faults Detection, Isolation and Service Restoration 
	Research Thrust II: Faults Detection, Isolation and Service Restoration 
	Research Thrust II: Faults Detection, Isolation and Service Restoration 
	Research Thrust II: Faults Detection, Isolation and Service Restoration 
	Research Thrust II: Faults Detection, Isolation and Service Restoration 
	Research Thrust II: Faults Detection, Isolation and Service Restoration 
	Questions

