

Machine Learning-based Load Monitoring, Fault Detection, and Network Reconfiguration in Next Generation Shipboard Power Systems

Soroush Senemmar

Advisor: Dr. Jie Zhang

Department of Electrical Engineering The University of Texas at Dallas Feb. 2024

- Rapid growing electricity consumption in modern navy ships.
- Complexity of energy management in Navy ships and growing interest in using unmanned surface vessels for long duration voyages.
- Potential risks of cyber/physical attacks to naval power systems.
- Utilizing future navy ships to assist the operation of power distribution grids, to enhance the reliability and resilience of power grids and the economic efficiency of the power networks.
- The overarching objective of this project is to:
 - Study the energy management and fault detection of the Navy power ship systems, by utilizing deep learning-based techniques to track the demand changes with real-time interactions and enhance the reliability and resilience of the Navy ships.

Research thrusts

Research Thrust I: Monitoring and Tracking Navy Ships Electricity Demands

- Load modeling and forecasting, and optimal unit dispatch
- Navy ship reliability
 enhancement

Normal to extreme working conditions

Extreme to normal working conditions

Research Thrust II: Faults Detection, Isolation, and Service Restoration

- Deep learning-based approaches
- Network reconfiguration
- Navy ship reliability and resilience enhancement

Research Thrust III: Model Aggregation of Future Naval Power Ships and Power Grids

- Co-optimization and scheduling
- Power grid reliability and resilience enhancement

Generation

Future SPS needs more generation capacity due to the constantly increasing demand.

Energy Storage System

Future SPS will leverage energy storage systems to improve the energy efficiency and response to pulsed loads.

Power Conversions

Future SPS uses more power electronic-based converters to **meet the** vast variety range of electric demands.

Pulsed Loads

Some unique loads will be added to SPS (e.g., laser weapons), and these loads can make future SPS more complex.

Integrated Power and Energy System

Integrated power system provides electric power to the total ship (propulsion and ship service) with an integrated plant.

Ship to Grid Connection

Future SPS will have more interaction with terrestrial power **network** to charge/discharge the energy storage system and help improve the grid operation and resilience.

Steady-State Quantities Methods

- Use steady state quantities, such as active and reactive power in steady state.
- Estimate the ON/OFF status and the power consumption of each component.
- Voltage variations from external sources may cause overlap for different components in the P-Q plane.
- The biggest concern on this type of method is the lack of ability to follow the transients.
- Dynamic Performance Methods
 - Focus more on dynamic performance, which is capable of following both steady state and transient load signals.
 - Use **signal processing methods** such as short-term Fourier transform (STFT) and discrete wavelet transform (DWT) approach for feature extraction.
 - Have the capability to **detect small load changes** through extracted features.
 - High computational burden for performing feature extraction and real-time signal disaggregation algorithms.

- A complete simulated dataset created that consists of power consumption of different devices on the **MVDC shipboard power system** (SPS).
- Wavelet transform is used for feature extraction from aggregated current signals.
- different **deep learning-based models** for non-intrusive load monitoring (NILM) in the SPS. The models show high accuracies in detecting different devices based on an aggregated current signal.

- A complete simulated dataset is created, consisting of power consumption of different devices with an MVDC shipboard power system (SPS).
- Wavelet transform is adopted for feature extraction from aggregated current signals.
- Different **deep learning-based models** have been developed for NILM in the SPS.

Design and Optimization of Energy Systems (DOES) Laboratory

The University of Texas at Dallas

Accuracy of the NILM for the propulsion system (Percentage)									
Model	Training Accuracy	Testing Accuracy	Loss						
Wavelet-DNN	52.42	51.96	1.199						
Wavelet-LSTM	82.3	78.96	0.455						
Wavelet-CNN	90.08	89.23	0.241						

Accuracy of the NILM for the zonal components (Percentage)

Model	Training Accuracy	Testing Accuracy	Loss
Wavelet-DNN	54.38	54.19	1.66
Wavelet-LSTM	84.24	82.19	0.452
Wavelet-CNN	98.62	98.14	0.0437

$$F1 = 2 \times \frac{precision \times recall}{precision + recall}$$
$$precision = \frac{TP}{TP + FP} , recall = \frac{TP}{TP + FN}$$

Metric	Accuracy
F1-score	99
Precision	98.5
Recall	99.6

		(Cor	nfus	sion	ma	atrix	k foi	r zo	nal	CO	mpo	one	nts					Cor	nfusio	on ma	atrix ⁻	for pi	ropul	sion	syste	em	
o -	856	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 -	3948	14	1	11	2	0	0	2	0	0	0
2	0	840	0 908	0		1	0	0	0	13	0 14	0	0	0	0	0		308	2230	15	1425	1		0			0	
m -	3	0	0	869	0	3	0	0	0	0	0	4	0	0	1	0	2 -	90	115	3776	0	0	7	0			0	
4 -	2	3		0	904	0	0			0			2		1		m -	242	275	104	3264	1	1	11	0	0	0	0
<u>د</u> د	0	0	0	1		868	0 882	2	0	0	0	1	0	12	0	1		65	78	2	36	3777	5	47	0	0	٥	
	0	0	0	0		1	0	918	o	0	0	1	0	7	0	7	4 -	60	,0	L	50				v	v	U	Ŭ
œ -	7	0	2	0			0	0	886	0	6		0		0		- د ر	35	1	219	0	28	3791	33	0	0	0	0
6-	0	3		3			0			880	0	2	0		0		- و	33	8	30	13	17	58	3790	69	4	0	
1 10	2	0	8	0 9		3	1	0 2	1	0	883 0	892	0	0 3	0 0	0	L -	82	1			0		1	3971	6	0	
12 1	3	0		0		о	20			0		0	841	0	11		ω -	50	0			0		3	11	3687	32	195
EL ,	0	0		0		16	0	2		0			0	928	0	0	6 -	75	0			0		0	452	296	3109	88
14	1	0	0	0	0	0	32	0	0	0	0	0	0	0	876 0	0 905	g		0			0		0		15	28	3924
51	ò	i	2	3	4	5	6	7	8	9	10	11	12	13	14	15		0	i	2	3	4	5	6	7	8	9	io

Confusion matrix for propulsion system

Average Accuracy of WCNN NILM for each class

Average Accuracy of WCNN NILM for each class under extreme condition

Conclusion

- Three deep learning-based models, including Wavelet-DNN, Wavelet-LSTM, and Wavelet-CNN, were developed for non-intrusive load monitoring in MVDC shipboard power systems.
- **Discrete wavelet transform** has a great capability to detect pulsed loads in aggregated current signals.
- The wavelet-CNN method can detect the On/Off status of components with **98% accuracy**.
- The CNN model is more compatible with the wavelet output decomposition matrix than the DNN and RNN methods.
- The wavelet-CNN method has an acceptable accuracy and F1-score in detecting pulsed loads **On** status.

Outcomes

- S. Senemmar and J. Zhang, "Non-intrusive Load Monitoring in MVDC Shipboard Power Systems using Wavelet-Convolutional Neural Networks," 2022 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 2022, pp. 1-6, doi: 10.1109/TPEC54980.2022.9750745.
- S. Senemmar and J. Zhang, "Convolutional Wavelet Neural Network Based Non-Intrusive Load Monitoring for Next Generation Shipboard Power Systems," Engineering Applications of Artificial Intelligence Journal(Under Review).

Design and Optimization of Energy Systems (DOES) Laboratory

The University of Texas at Dallas

Design and Optimization of Energy Systems (DOES) Laboratory

- Wavelet Transform-based Graph Neural Network (WGNN) for non-intrusive fault detection, classification, and location identification of SPS are designed and tested.
- A model of 4 Zone MVDC shipboard power system is used to investigate the effectiveness of the models.
- Fault scenarios are simulated at each zone. Then, WGNN model is trained and tested based on the voltages and currents signals.
- The results show that deep WGNN model can detect the faults, fault types, and fault locations very accurately and faster than conventional methods.

- Case I: Intrusive fault detection
- Case II: Non-intrusive fault detection
- Case III: Non-intrusive fault detection with pulsation load

Case	Training Accuracy	Training Loss	Testing Accuracy	Testing Loss
Case I	99.99%	0.225e-4	99.99%	7.01e-4
Case II	97.26%	0.0851	97.70%	0.0392
Case III	94.44%	0.1392	95.23%	0.1180

Design and Optimization of Energy Systems (DOES) Laboratory

The University of Texas at Dallas

Spectral graph theory and graph signal processing form the basis for the graph convolution.

 \succ Adjacency matrix: $A \in \mathbb{R}^{NXN}$ $L_G = I - D^{-\frac{1}{2}} A D^{-\frac{1}{2}}$ \succ Feature matrix: X $\in \mathbb{R}^{NXF}$ Normalized Laplacian and $L_C = \Theta \Lambda \Theta^T$ its eigen decomposition $\mathbf{x} *_{q} \mathbf{U} = \mathcal{F}^{-1}(\mathcal{F}(\mathbf{x}) \circ \mathcal{F}(\mathbf{U}))$ $= \Theta(\Theta^T \mathbf{x} \circ \Theta^T \mathbf{U})$ Graph convolution of the graph signal x with a filter U $\mathbf{x} *_a \mathbf{U} = \Theta \mathbf{U} \Theta^T \mathbf{x}$ (3) $\mathbf{x} *_g \mathbf{U} = \sum^n \alpha_k H_k(\tilde{\lambda}) \mathbf{x}$ (4)*k*=0 First order approximated $\Lambda = diag(e_0, e_1, e_2, ..., e_{n-1})$, Chebyshev filter $\tilde{\lambda} = 2\lambda/max(e_0, e_1, ..., e_{n-1}) - I_{\bullet}$ **Convolution of the** graph signal in $\mathbf{x} *_{g} \mathbf{U} = \alpha (I + D^{-\frac{1}{2}} A D^{-\frac{1}{2}}) \mathbf{x}$ (5) terms of A and x $K = 1, \ \alpha_0 = -\alpha_1 = \alpha, \ max(e_0, e_1, .., e_{n-1}) = 2$

matrix The University of Texas at Dallas

Adjacency

matrix

^n

Χ,

 X_{2}

 X_1

Feature

• Graph: G = (N, E)

Sample

Sample

Sample

Sample

3

n

Performance of the learning networks during Test phase

Network	Categorical Accuracy	Categorical Loss
Fault Location	99.38%	0.027
Fault Type and Detection	99.75%	0.015

	Accuracy							
Model	Fault Detection	Fault Classification	Fault Location					
Proposed GCN model	99.75%	99.75%	99.38%					
Decision Tree	97%	85%	-					
K-nearest neighbors	90.4%	90.4%	-					
Fully-connected DNN	-	99.58%	-					
Differential Relay	96%	-	-					

Performance during Training 1.0 eutropy - 0.3 Training accuracy 0 Cross Validation accuracy Training loss Validation loss 0.2 Categorical 0 0.2 0.0 - 0.0 300 500 0 100 200 400 Iterations Fault Type 1.0 -1.4 1.2 dutue Training accuracy 0.6 /alidation accuracy cros - 0.8 Training loss Validation loss Categorical 0 Categorical 0 - 0.6 0.0 - 0.0 0 200 400 600 Fault Location

Design and Optimization of Energy Systems (DOES) Laboratory

- HIL simulation involves dedicated hardware, such as FPGA-based simulators, to achieve <u>high-speed</u> and <u>low-latency</u> real-time simulation.
- OPAL-RT systems are commonly used for <u>testing and validating</u> control systems in power systems.
- OPAL-RT real-time simulation has <u>high</u> <u>fidelity</u> and <u>low-latency</u> performance; thus, it can provide extremely <u>accurate</u> and <u>deterministic</u> simulation results in real-time.

Design and Optimization of Energy Systems (DOES) Laboratory

The University of Texas at Dallas

Schematic of outage management in an example SPS network with main and auxiliary generators, and sectionalizing/tie switches.

Port

Learning Framework

The shipboard power system is simulated using Simulink Matlab.

The policy network consists of three main components:

- 1. A series of graph capsule network layers (**GCAPS**) which is used to compute the graph node embeddings for the SPS graph.
- 2. A **feedforward network** that is used to compute a feature vector, referred to as context embedding.
- 3. A **Multi-Layered Perceptron** (MLP) which takes the node embeddings from the GNN and the context embeddings from the feedforward network as input.

Node properties
$$\gamma_i = [P_d^i, Q_d^i, P_g^i, Q_g^i, V^i]$$
Context $[E_{supp}, V_{viol}, l^E]$

Conclusion

- Wavelet Graph Neural Network (WGNN) was developed for fault detection, classification, and location identification in MVDC shipboard power systems.
- The fault detection methods can detect the faults with more than 99% and 97% accuracy in intrusive and non-intrusive modes, respectively.
- With a -5 dB signal-to-noise ratio, the models still have approximately 85% accuracy, while conventional methods can severely lose their accuracy.

Outcomes

- S. Senemmar and J. Zhang, "Deep Learning-based Fault Detection, Classification, and Locating in Shipboard Power Systems," 2021 IEEE Electric Ship Technologies Symposium (ESTS), Arlington, VA, USA,
- R. A. Jacob, S. Senemmar and J. Zhang, "Fault Diagnostics in Shipboard Power Systems using Graph Neural Networks," 2021 IEEE 13th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Dallas, TX, USA, 2021, pp. 316-321,
- S. Senemmar, R. A. Jacob and J. Zhang, "Non-Intrusive Fault Detection in Shipboard Power Systems using Wavelet Graph Neural Networks," Measurement Energy (to be submitted).

Questions

