Development of a Common Dataset for Electronic Component Survivability Under Repeated Shock

Joud N. Satme; Department of Mechanical Engineering Daniel Coble; Department of Mechanical Engineering Trotter Roberts; Department of Mechanical Engineering Austin R.J. Downey; Department of Mechanical, Civil and Environmental Engineering

Outline:

Methodology

- dataset development
- PCB health state estimation

Experimentation

- experimental setup
- daisy chain PCB impedance
- Results and discussion
 - time and frequency domain
 - feature extraction
 - impedance vs. number of impacts

Future work

- multi-connection impedance measurement
- raise sampling rate and impact magnitude

Datasets of Varying Complexity

Experimentation

Results and Discussion

Common Datasets - a Method for Collaboration

https://github.com/High-Rate-SHM-Working-Group

Dataset-1-High-Rate-Drop-Tower-Data-set (Public)	
A data set focused on quad PCBs under shock.	
● Python 😵 0 🏠 0 🕄 0 Updated on Jun 23, 2021	
Dataset-1a-Shock-Test-GAN-model	
Generating model trained on Dataset 3	
● Python N CC-BY-SA-4.0 😲 0 🏠 0 0 👬 0 Updated on Jun 24, 2022	
Dataset-2-DROPBEAR-Acceleration-vs-Roller-Displacement (Public) Acceleration-vs-Roller-Displacement Dataset for DROPBEAR	
● Python 🏽 CC-BY-SA-4.0 💱 1 😭 1 💽 0 🖏 0 Updated on Nov 23, 2022	
Dataset-3-High-Rate-In-Situ-Damage-of-Electronics-Packages Public Drop Tower shock tests of highly-instrumented electronics package %0 ☆0 \$1,0 Updated on Jun 24, 2021	
Dataset-4-Univariate-signal-with-non-stationarity Public univariate signal with varying levels of non-stationarities	
● Python 🕸 CC-BY-SA-4.0 🚏 0 🏠 0 0 🕻 0 Updated on Sep 27, 2022	
Dataset-5-Extended-Impact-Testing (Public)	ــــــــــــــــــــــــــــــــــــــ
● Roff - 殖 CC-BY-SA-4.0 😵 0 ☆ 0 🕄 0 Updated on Sep 30, 2022	
Dataset-6-DROPBEAR_data (Public) Data for the paper Generated datasets from dynamic reproduction of projectiles in ballistic environments for advanced rese (DROPBEAR)	earch
¥0 ☎0 Jl 7 Updated on Jul 24, 2022	

Experimentation

Experimental setup

Current test sample

PCB connectioninternal connections

Time and frequency domain response

Dataset Layout

https://github.com/High-Rate-SHM-Working-Group/Dataset-5-Extended-Impact-

Testing/tree/main/data/dataset-2

Dataset-5-Extended-Impact-Testing / data / dataset-2 /				
Name	Last commit message			
ata-1	Delete README.md			
media/initial_microscope_images	added image annotation file			
C README.md	Update README.md			
README.md				

Dataset 2

Dataset 2 consists of 32 tests performed May 5 2023. Tests were performed consecutively on the same PCB. Following each impact test, impedance was measured at five LCR excitation frequencies. The folder also contains a python file with a demonstration for extracting data from the .lvm files and plotting, and figures plotting the acceleration and measured impedance.

Dataset Layout

- LabVIEW Measurement,
- 2 Writer_Version,2
- 3 Reader_Version,2
- 4 Separator,Comma
- 5 Decimal_Separator,.
- 6 Multi_Headings,No
- 7 X_Columns,One
- 8 Time_Pref,Absolute
- 9 Operator, localuser
- 10 Date,2023/05/05
- 11 Time, 13: 39: 50.8870199312495426037
- 12 ***End_of_Header***,
- 13,
- 14 Notes,X values guaranteed valid only for Acceleration_0,,,,,
- 15 Channels,6,,,,,
- 16 Samples, 51200, 51200, 5, 5, 5, 5, 5
- 17 Date,2023/05/05,2023/05/05,1903/12/31,1903/12/31,1903/12/31,1903/12/31,
- 18 Time, 13:40:37.7466657312496152783, 13:40:37.7466657312496152783, 19:00:00, 19:00:00, 19:00:00, 19:00:00,
- 19 Y_Unit_Label,m/s^2,m/s^2,,,,,
- 20 X_Dimension, Time, Time, Time, Time, Time, Time,
- 22 Delta_X,1.953125E-5,1.953125E-5,1.000000,1.000000,1.000000,1.000000,
- 23 ***End_of_Header***,,,,,,,
- 24 X_Value,Acceleration_0,Acceleration_1,Untitled,Untitled 1,Untitled 2,Untitled 3,Comment
- 25 46.859646,0.046410,-2.739636,100000.000000,492701.000000,-89.245800,0.000000
- 26 46.859665,-1.409304,-2.600491,10000.000000,5188780.000000,-89.330200,0.000000
- 27 46.859685,3.435495,-1.672855,1000.000000,5.136690E+7,-89.091900,0.000000
- 28 46.859704,-1.523032,-1.672855,120.000000,4.189720E+8,-88.215400,0.000000
- 29 46.859724,-1.250085,-2.438154,100.000000,5.134100E+8,-78.952400,0.000000
- 30 46.859743,1.479379,-0.698837,,,,
- 31 46.859763,-0.863411,0.205609,,,,
- 32 46.859783,-0.590465,-1.765618,,,,
- 33 46.859802,1.092705,-2.646873,,,,
- 34 46.859822,-3.137965,-4.594908,,,,
- 35 46.859841,1.297415,-4.826817,,,,
- 36 46.859861,2.298219,-2.067100,,,,
- 37 46.859880,-3.774840,-4.061518,,,,
- 38 46.859900,-4.184259,-1.301800,,,,

Acceleration feature extraction (X)

Table 1 Time-domain features					
No.	Features	Description	Physical interpretation		
T1	Maximum	$Max(X_i)$	Kinetic energy related		
T2	Absolute Mean	$Mean(X_i)$			
T3	RMS	$\sqrt{\frac{\sum X_i^2}{N}}$			
T4	Skewness	$\frac{\sum (X_i - \bar{X})^3}{(N-1)s^3}$	Data statistics related		
T5	Kurtosis	$\frac{\sum (X_i - \bar{X})^4}{(N-1)s^4}$			
T6	Crest Factor	$\frac{\mathrm{Max}(X_i)}{X_{rms}}$			
T7	Shape Factor	$\frac{X_{rms}}{\text{Mean}(X_i)}$	Sinusoidal wave shape related		
T8	Impulse Factor	$\frac{\operatorname{Max}(X_i)}{\operatorname{Mean}(X_i)}$			

Table 2 Frequency-domain features

No.	Features	Description	Physical interpretation
F1	FC	$\frac{\int f \times s(f)df}{\int s(f)df}$	Position change of main frequencies
F2	RMSF	$\left[\frac{\int f^2 \times s(f)df}{\int s(f)df}\right]^{1/2}$	

Electrical feature extraction (y)

Develop Test-to-failure Data and Surrogate Performance Model

Thank you

Questions?

Author Information Name: Austin R.J. Downey Email: austindowney@sc.edu