

Trotter Roberts¹, Ryan Yount¹, Jacob Dodson³, Adriane Moura⁴, and Austin R.J. Downey^{1,2}

1. University of South Carolina Department of Mechanical Engineering.

- 2. University of South Carolina Department of Civil Engineering.
 - 3. Air Force Research Laboratory.
 - 4. Applied Research Associates.

OVERVIEW

Introduction to High-Rate Impacts

Project Motivation and Support

Ongoing Work

- Shock Testing
- Board Design

Focused Study

- Experiment
- Simulation
- Analysis
- Conclusion

Future Work

- Control
- Placement

INTRODUCTION

- Shock occurs when a system undergoes a dramatic and sudden change in acceleration.
- Shock can cause damage to the system, contributing to objective failure.
- Active control of these systems can dampen shock and prevent damage.

MOTIVATION

High-speed Aircraft and Airframes

ACTIVE CONTROL

• <u>Key Point</u>: Optimized control of cantilever beam vibrations.

• Content:

- **Study**: Awada, A, et al. (2022)
- Conclusion: The genetic algorithm developed in this study successfully optimizes active control of a smart cantilever beam using piezoelectric actuators, significantly reducing beam vibrations.
- **Takeaway**: A simple PID controller may demonstrate the potential for stable and efficient vibration control in smart structures.

CONTROL STRATEGIES

• <u>Key Point</u>: Improved performance in structural control through adaptive algorithms.

Content:

- Study: Banaei, Ali, et al. (2023)
- Conclusion: The introduction of dynamic weighting factors in the genetic algorithm's constrained objective function leads to improved vibration reduction in complex, large-scale structural systems.
- **Takeaway**: This approach enhances the adaptability of control systems in varying conditions, making it more suitable for complex structural applications.

PIEZO ACTIVE STRUCTURES

• <u>Key Point</u>: Application-focused development of piezoelectric actuator systems.

• Content:

- Study: Gosiewski, Z, et al. (2023)
- Conclusion: Experimental tests on different configurations of piezoelectric actuators reveal the most effective designs for real-world vibration control applications, offering practical improvements in piezoelectric structure performance.
- **Takeaway**: Real-world testing of piezoelectric materials and actuator configurations helps refine design parameters for improved vibration control.

ACTUATOR PLACEMENT

• <u>Key Point</u>: Vibration reduction through strategic placement of piezoelectric patches.

• Content:

- **Study**: Labanie, Mohammad F, et al. (2017)
- Conclusion: Finite element analysis identifies the optimal locations for piezoelectric patch placement on structures, significantly improving vibration control efficiency.
- Takeaway: Strategic patch placement, determined through simulation, maximizes the effectiveness of vibration control systems, offering better performance for specific structural designs.

ONGOING WORK

- Shock Test Experimentation
- PCB and Component Design

PCB connectioninternal connections

ONGOING WORK

FOCUSED EXPERIMENT

- Acceleration and strain measurement at varying drop heights.
- Dataset creation for later use.

Drop Tower and Tested Printed Circuit Board.

SIMULATION

- SolidWorks
 - Frequency
 - o Strain
 - o Stress
 - o Displacement

Displacement Magnitude

Simulated Stress (left) and Strain (right) Magnitude.

Diameter	Thickness	Hole Placement	Density	Young's Modulus	Poisson Ratio
1.625 in	0.063 in	1.450 in	1900 kg/m³	18.6 GPa	0.2

System Specifications used in Simulations.

Simulated Mode Shapes and Natural Frequencies.

ANALYSIS

- Data processing to confirm simulation accuracy.
- Natural frequency comparison.

System Response Fast Fourier Transform

	Mode 1	Mode 2	Mode 3	Mode 4
Simulated Frequency	3681 Hz	3909 Hz	5671 Hz	10316 Hz
Experimental Frequency	3600 Hz	4000 Hz	5800 Hz	10200 Hz
Margin of Error	2.20 %	2.33 %	2.27 %	1.13 %

System Frequency Response Function

CONCLUSION

- Focusing on areas of most strain, optimal placement of piezoelectric actuators proposed to dampen system impacts.
- Alternative placement proposed for direct comparison.

Proposed (left) and Possible Alternative (right) Actuator Placement for Optimization.

FUTURE WORK

- Progress toward control strategies
 - o LabView FPGA
 - o Python Simulations
 - o Simulink
- Piezoelectric sensing and actuation experimentation.

QUESTIONS?

