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INTRODUCTION

Shock occurs when a system
undergoes a dramatic and sudden
change in acceleration.

Shock can cause damage to the
system, contributing to objective
failure.

Active control of these systems
can dampen shock and prevent
damage.
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o Ozgomparison of tip displacement with and without control at x1=0.3

PID controller with GA parameters
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« Key Point: Optimized control of
cantilever beam vibrations.

* Content: " zw-pztn=0

« Study: Awada, A, et al. (2022) initial soution at 1=

« Conclusion: The genetic algorithm
developed in this study successfully
optimizes active control of a smart cantilever i
beam using piezoelectric actuators, [l =Vt > |20 D) = A
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CONTROL STRATEGIES

« Key Point: Improved performance in
structural control through adaptive
algorithms.

Structural Dynamic

« Content; iy ind Nevmak mehod
« Study: Banaei, Ali, et al. (2023) Contrl on sys.

« Conclusion: The introduction of dynamic e
weighting factors in the genetic algorithm’s
constrained objective function leads to Caleulate the penaly Deermining
improved vibration reduction in complex, H /. function forinpur  [@—] *PrOPEIC SR
large-scale structural systems. R objectve function

Takeaway: This approach enhances the
adaptability of control systems in varying
conditions, making it more suitable for
complex structural applications.
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PIEZO ACTIVE STRUGTURES

« Key Point: Application-focused development
of piezoelectric actuator systems.

 Content:
 Study: Gosiewski, Z, et al. (2023)

« Conclusion: Experimental tests on different
configurations of piezoelectric actuators reveal the
most effective designs for real-world vibration
control applications, offering practical
Improvements in piezoelectric structure
performance.

Takeaway: Real-world testing of piezoelectric
materials and actuator configurations helps refine
design parameters for improved vibration control.
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AGTUATOR PLACEMENT Sensor-PZT-5H

o . Al Beam
« Key Point: Vibration reduction through ,
strategic placement of piezoelectric
patches.

« Content:
» Study: Labanie, Mohammad F, et al. (2017) EHESEY 08 MR0g) el Clo (0420

 Conclusion: Finite element analysis identifies ;
the optimal locations for piezoelectric patch
placement on structures, significantly
improving vibration control efficiency.

Takeaway: Strategic patch placement,
determined through simulation, maximizes the
effectiveness of vibration control systems,
offering better performance for specific
structural designs.
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FOGUSED EXPERIMENT

 Acceleration and strain measurement at varying drop heights.

o Dataset creation for later use.
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Top (left) and Bottom (right) Strain over Time.
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Diameter

Thickness

Hole
Placement

Density

Young’s
Modulus

Poisson
Ratio

1.625 in

0.063 in

1.450 1n

1900 kg/m?

18.6 GPa

0.2

SIMULATION

System Specifications used in Simulations.

 SolidWorks
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Simulated Mode Shapes and Natural Frequencies.
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ANALYSIS

« Data processing to confirm simulation accuracy.
 Natural frequency comparison.
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GONCLUSION

» Focusing on areas of most
strain, optimal placement of
piezoelectric actuators
proposed to dampen system
Impacts.

« Alternative placement
proposed for direct
comparison.

D Proposad Placement

Proposed (left) and Possible Alternative (right) Actuator Placement for Optimization.
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FUTURE WORK

* Progress toward control
strategies
o LabView FPGA
o Python Simulations
o Simulink
 Piezoelectric sensing and actuation ]

experimentation.
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