Real-time state estimation of nonstationary systems using fast topological data analysis features

Graduate Research Group Arman Razmarashooli Daniel A. Salazar

Principal Investigators: Dr. Simon Laflamme Dr. Chao Hu

School of Engineering

IOWA STATE UNIVERSITY

Department of Civil, Construction and Environmental Engineering

Foundations of Adaptive Systems and Technologies

High-Rate Structural Health Monitoring (HRSHM)

Definition

- 10 kg TNT takes 0.3 to 100 ms to 100 ms to travel over 1 to 40 m distance.
- 100 µs at Mach 5 corresponds to 150 mm. 1.5 MHz sampling rate gives a 1 mm. resolution.

High-Rate Structural Health Monitoring (HRSHM)

Definition

- Systems experiencing high-rate dynamics
 - Accelerations higher than $100 g_n (g_n = 9.81 \text{ m/s}^2)$ in less than 1 ms.
- Characterized by
 - Large uncertainties in external loading.
 - High levels of nonstationary and heavy disturbance.
 - Generations of unmodeled dynamics from changes in mechanical configuration.

Motivation & Objectives

Fast Model Reference Adaptive System

• Dynamic Reproduction of Projectile Ballistic Environments for Advanced Research (DROPBEAR).

SYSTEMS AND TECH

Tests	Pin position	Frequency (Hz)	Estimated frequency (Hz)	Convergence time (ms)
1-5	0 €0 mm M] 17.7	17.67	780
6-10	100 mm	21.0	21.00	400
11-15	0 150 mm	25.0	24.99	160
16-20		31.0	31.01	100

200 mm

Data Pre-Processing

Embedding Theorem

Key Remarks:

- 1-to-1 mapping exists between the state vector **s** and delay vector **x**.
- The delay vector **x** preserves the essential dynamics.
- Minimal representation can be obtained using the essential dynamics as inputs.

Introduction:

- Characteristics of data that do not depend on certain details of the representation.
- Infer relevant topological features from these spaces.
- Using these features for further processing (data classification).
- TDA has never been used for time series prediction.

Challenges:

- No direct access to topological information.
- Need for topological construction (simplicial complexes).
- Distinguish topological signal from noise.
- Find a way to incorporate TDA features within neural network.
- Find a fast way (shortcut) to implement TDA features.

Simplicial Complexes

- A generalization of a graph.
- A 0-simplicial complex is a set of points, a 1-simplicial complex is a graph.
- An n-simplicial complex contains up to n-dimensional simplices.

A simplicial complex

Not a simplicial complex

Simplicial Complexes

- It is not obvious what the correct radius is for the construction of our simplicial complex.
- Persistent homology solved this problem by measuring topological features which persist while growing radii.
- Persistence diagram keeps track of the increase/decrease in each Betti number, representing the birth and death of features as radii increase.
- Informally, the kth Betti number refers to the number of k-dimensional holes on a topological surface.

Persistence Diagram

- Record the changes when increasing the threshold into a plot known as the persistence diagram.
- Each point represents a hole in the point cloud.

- TDA features of Interest:
 - Maximum Persistence.
 - Bottleneck Distance.
 - Wasserstein Distance.
 - Persistence Landscape.
 - Persistence Silhouette.
 - Number of Off-Diagonal Points.
- TDA of DROPBEAR
 - TDA features on a physical context.
 - Application: cantilever beam with a fast-moving boundary condition [1].

•
$$\omega_j = 4\pi^2 \sqrt{\frac{EI}{\rho A}} \left(\frac{4j+1}{4L}\right)^2$$

•
$$x(t) = A\cos(\omega t) = \cos(2\pi f t)$$

[1] Eduardo Kausel. Advanced Structural Dynamics. Cambridge University Press, 2017.

- The meaning of TDA features for a single-harmonic time series.
- Suggested optimal embedding dimension is 2.
- To account for noise dimension 3 is selected
- Containing information about zero-dimensional hole $(\rm H_0)$ and one-dimensional hole $(\rm H_1)$ and two dimensional hole $(\rm H_2)$
- Maximum Persistence of H_1 and H_0 relates to the frequency of harmonic signals.

MS AND TECHNOLOGIES

Challenges:

- The embedding theorem is applicable only to stationary systems.
- Our dynamics are highly non-stationary.

Strategy: Multi-Resolution Windowing

- Applying a sliding window over the dataset to extract local values for H₁.
- Maximum allowable time delay $(\tau) = \frac{0.25}{f_{max}}$
- Size of window $1 = 1/f_{min} + \tau$
- Size of window $2 = 1/f_{max} + \tau$,

Case Study #1: Synthetic Cosine Data

- $x(t) = Cos(2\pi f(t)t)$
- Moving window size:
- Window 1 = 0.052 s
- Window 2 = 0.022 s
- Time delay = 0.03 s

Case Study #1: Synthetic Cosine Data

Maximum Persistence of H_0 correlates with Cart Location

Amplitude

Case Study #1: Synthetic Cosine Data

Maximum Persistence of H_1 correlates with Cart Location

- DROPBEAR without Impact Hammer
- Assumption: TDA features are linearly related to the frequency
- Linear Regression: $x^2 = a_0 + a_1 H_i$,

- DROPBEAR without Impact Hammer
- Assumption: TDA features are linearly related to the frequency
- Linear Regression: $x^2 = a_0 + a_1 H_i$,

Performance Metrics:

- J_1 is the mean absolute error
- J_2 is the ratio of incorrect estimation within a defined threshold (5, 10, and 20 mm)
- J_3 is the mean absolute error within a defined threshold (5, 10, and 20 mm)

		J_1	$J_{2,5}$	$J_{2,10}$	$J_{2,20}$	$J_{3,5}$	$J_{3,10}$	$J_{3,20}$
Test	Feature	(mm)	(%)	(%)	(%)	(mm)	(mm)	(mm)
Test 1	H_1	14.1	65	50	25	2.2	3.8	7.5
	STFT	11.9	81	48	14	2.8	5.6	10.6
Test 2	H_1	16	88	68	18	2.4	5.6	10.5
	STFT	12.1	84	52	14	2.4	5.6	10.8

Performance results for cart localization.

Results f	from LSE
-----------	----------

Test	Feature	a_0	a_1	\mathbb{R}^2
Test 1	H_0	-0.41	3.17	0.95
	H_1	-0.8	1.85	0.95
	STFT	-0.13	1.07	0.98
Test 2	H_0	-0.07	5.25	0.63
	H_1	-1.05	2.31	0.91
	STFT	-0.11	1.059	0.96

Challenges:

- Chaotic and complex environments in high-rate dynamic systems.
- High computational complexity/cost in TDA algorithms.

What is fast TDA?

We coined fast TDA as the geometric feature extraction from a point cloud inspired by conventional TDA features obtained from persistence homology.

- In each window, an ellipse is fitted through the Least Square Optimization.
- Plot the ratio of the minor axis to the major axis as an indication of the persistence of the ellipse.

Real-time estimation of nonstationary Systems

- DROPBEAR without Impact Hammer (Fast TDA)
- Assumption: TDA features are linearly related to the frequency
- Linear Regression: $x^2 = a_0 + a_1 H_i$,

- DROPBEAR without Impact Hammer (Fast TDA)
- Assumption: TDA features are linearly related to the frequency
- Linear Regression: $x^2 = a_0 + a_1 H_i$,

- DROPBEAR without Impact Hammer (Fast TDA)
- Assumption: TDA features are linearly related to the frequency
- Linear Regression: $x^2 = a_0 + a_1 H_i$,

Comparison TDA – Fast TDA Results

SYSTEMS AND TECHNOLO

		Computatio	onal Time	2		
STFT		Fast TDA			TDA	
10 ms		84 ms			960 ms	
		Table 1: Resul	lts from LS	E		
	Test	Feature	a_0	a_1	\mathbb{R}^2	
	Test 1	H_0	-0.41	3.17	0.95	
		H_1	-0.8	1.85	0.95	
		STFT	-0.13	1.07	0.98	
		Fast-TDA (H_1)	-0.52	1.57	0.98	
	Test 2	H_0	-0.07	5.25	0.63	
		H_1	-1.05	2.31	0.91	
		STFT	-0.11	1.059	0.96	
		Fast-TDA (H_1)	-0.31	4.22	0.95	
	Test 3	H_0	-0.15	4.25	0.86	
		H_1	-0.92	2.47	0.87	
		STFT	-0.034	0.93	0.95	
		Fast-TDA (H_1)	-0.46	2.16	0.91	

Comparison TDA – Fast TDA Results

		J_1	$J_{2,5}$	$J_{2,10}$	$J_{2,20}$	$J_{3,5}$	$J_{3,10}$	$J_{3,20}$
Test	Feature	(mm)	(%)	(%)	(%)	(mm)	(mm)	(mm)
Test 1	H_1	14.1	65	50	25	2.2	3.8	7.5
	STFT	11.9	81	48	14	2.8	5.6	10.6
	Fast-TDA	8.5	53	33	10	2.1	3.5	6.3
Test 2	H_1	16	88	68	18	2.4	5.6	10.5
	STFT	12.1	84	52	14	2.4	5.6	10.8
	Fast-TDA	10.9	81	48	20	2.3	5.8	8.3
Test 3	H_1	8.7	46	29	12	1.4	2.9	4.9
(sect. 1)	STFT	6.3	38	13	3	3.4	4.6	5.4
	Fast-TDA	8.25	42	30	10	1.9	4.6	5.0
Test 3	H_1	10.2	56	34	15	1.9	3.8	6.0
(sect. 2)	STFT	7.3	50	23	6	3.5	4.6	6.4
	Fast-TDA	9.2	54	31	11	2.1	3.9	6.2
Test 3	H_1	5.7	30	18	8	1.3	2.1	3.4
(sect. 3)	STFT	5.9	21	12	5	4	4.4	5.1
	Fast-TDA	5.7	28	17	7	1.9	2.6	3.8

Table 2: Performance results for cart localization.

Major findings (Increasing frequency Implementation)

	TDA	Fast TDA
	Online available resources	• Direct Implementation for
Advantages	• Mechanistic	maximum H1.
	Implementation	• Low Computational cost
Advantages	 Online available resources Mechanistic Implementation 	 Direct Implementation for maximum H1. Low Computational cost

Disadvantages

• High Computational cost

- No available documentation
- Application under development

Persistence Diagram Analysis and reconstruction

Fast TDA results

Synthetic data with Fast TDA Diagram

Fast TDA (Multiple Frequency Implementation)

Challenges:

- Few training data.
- Our dynamics are highly nonstationary.
- Sub-millisecond computations.
- Complexity of the Point Cloud.
- Feature interpretation.

Ellipse Identification Methods

Method I:

- Minimum pairwise distance.
- Implementing a threshold (10%) to find possible links between points in the point cloud.

Applications:

- Good for multiple section identification based on minimum Threshold.
- Good for identifying intersections in noisy data.

$$dmin (d_{pairwise} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2})$$

$$T = d_{min} \cdot 1.1$$

$$Condition \Rightarrow d_{ij} = \sqrt{(x_j - x_i)^2 + (y_j - y_i)^2} \le T$$

Ellipse Identification Methods

Method II:

• Minimum pairwise distance identified between non-consecutive points.

Applications:

- Efficient for singular node tracking.
- Optimal for maximum two ellipse identification.
- Better identification between sections and outliners.

$$dmin(d_{i-j_ignored\ range} =) \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Persistence Diagram Analysis and reconstruction

Synthetic Data with Fast TDA Diagram

33

TDA and Fast TDA with Noisy Data

• Better identification of hidden characteristics in noisy environments.

Summary

- Key Outcomes:
 - Fast TDA feature extractions based on persistence homology diagram.
 - Fast TDA homology diagram implementation for multiple frequencies.
 - Implementation of Fast TDA for noisy environments.
- Upcoming Work/Challenges:
 - Improve two dimensions of multiple ellipse identification.
 - Optimize metrics for multiple H1 features identification.
 - Relate Multiple frequency topological features to time series characteristics.
 - Implementation of three dimensions and feature extraction in multiple frequency point cloud.

Acknowledgements

- Air Force Office of Scientific Research (AFOSR).
- Defense Established Programs to Stimulate Competitive Research (DEPSCoR).
- Air Force Research Laboratory Munitions Directorate.

Questions

Thank you for your time

Questions?