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High-Rate Structural Health Monitoring (HRSHM)
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Definition

• 10 kg TNT takes 0.3 to 100 ms to 100 ms to travel over 1 to 40 m distance.

• 100 µs at Mach 5 corresponds to 150 mm. 1.5 MHz sampling rate gives a 1 mm. resolution.



High-Rate Structural Health Monitoring (HRSHM)
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Definition

• Systems experiencing high-rate dynamics

• Accelerations higher than100 gn ( gn = 9.81 m/s2) in less than 1 ms.

• Characterized by

• Large uncertainties in external loading.

• High levels of  nonstationary and heavy disturbance.

• Generations of  unmodeled dynamics from changes in mechanical configuration.



Motivation & Objectives
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Fast Model Reference Adaptive System

• Dynamic Reproduction of Projectile Ballistic Environments for Advanced Research 
(DROPBEAR).



Data Pre-Processing
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Embedding Theorem

𝐬(𝑘) ≡ 𝐱 𝑘 = [𝑦1 𝑘 , 𝑦1 𝑘 − 𝜏 , 𝑦1 𝑘 − 2𝜏 ,… , 𝑦1(𝑘 − 𝑑 − 1 𝜏]

Key Remarks:

• 1-to-1 mapping exists between the state vector s and delay vector x.

• The delay vector x preserves the essential dynamics.

• Minimal representation can be obtained using the essential dynamics as inputs.



Topological Data Analysis
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Introduction:

• Characteristics of  data that do not depend on certain details of  the representation.

• Infer relevant topological features from these spaces.

• Using these features for further processing (data classification).

• TDA has never been used for time series prediction.

Challenges:

• No direct access to topological information.

• Need for topological construction (simplicial complexes).

• Distinguish topological signal from noise.

• Find a way to incorporate TDA features within neural network.

• Find a fast way (shortcut) to implement TDA features.



Topological Data Analysis
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Simplicial Complexes

• A generalization of  a graph.

• A 0-simplicial complex is a set of  points, a 1-simplicial complex is a graph.

• An n-simplicial complex contains up to n-dimensional simplices.

A simplicial complex Not a simplicial complex



Topological Data Analysis
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Simplicial Complexes

• It is not obvious what the correct radius is for the construction of  our simplicial complex.

• Persistent homology solved this problem by measuring topological features which persist while 
growing radii.

• Persistence diagram keeps track of  the increase/decrease in each Betti number, representing 
the birth and death of  features as radii increase.

• Informally, the kth Betti number refers to the number of  k-dimensional holes on a topological 
surface.



Persistence Diagram

• Record the changes when increasing the threshold into a plot known as the persistence diagram.

• Each point represents a hole in the point cloud.

Topological Data Analysis

8



Topological Data Analysis
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• TDA features of  Interest:

• Maximum Persistence.

• Bottleneck Distance.

• Wasserstein Distance.

• Persistence Landscape.

• Persistence Silhouette.

• Number of  Off-Diagonal Points.

• TDA of  DROPBEAR

• TDA features on a physical context.

• Application: cantilever beam with a fast-moving boundary condition [1].

•

•

[1] Eduardo Kausel. Advanced Structural Dynamics. Cambridge University Press, 2017.                                                    



Topological Data Analysis
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• The meaning of  TDA features for a single-harmonic time series.

• Suggested optimal embedding dimension is 2.

• To account for noise dimension 3 is selected

• Containing information about zero-dimensional hole (H0) and one-dimensional hole (H1) and two 
dimensional hole (H2)

• Maximum Persistence of  H1 and H0 relates to the frequency of  harmonic signals.



Challenges:

• The embedding theorem is applicable only to 
stationary systems.

• Our dynamics are highly non-stationary.

Strategy: Multi-Resolution Windowing

• Applying a sliding window over the dataset 
to extract local values for H1.

• Maximum allowable time delay

• Size of  window 1 = 1/𝑓𝑚𝑖𝑛+ 𝜏

• Size of  window 2 = 1/𝑓𝑚𝑎𝑥+ 𝜏 ,

Topological Data Analysis
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Case Study #1: Synthetic Cosine Data
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• 𝑥 𝑡 = 𝐶𝑜𝑠(2π𝑓 𝑡 𝑡)
• Moving window size:

• Window 1 = 0.052 s

• Window 2 = 0.022 s

• Time delay = 0.03 s



Case Study #1: Synthetic Cosine Data
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Maximum Persistence of  H0 correlates with Cart Location



Case Study #1: Synthetic Cosine Data
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Maximum Persistence of  H1 correlates with Cart Location



Case Study #2: Experimental Data from DROPBEAR Testbed
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• DROPBEAR without Impact Hammer

• Assumption: TDA features are linearly related to the frequency

• Linear Regression: 



Case Study #2: Experimental Data from DROPBEAR Testbed

16

• DROPBEAR without Impact Hammer

• Assumption: TDA features are linearly related to the frequency

• Linear Regression: 



Topological Data Analysis
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Performance Metrics:

J1 is the mean absolute error

J2 is the ratio of  incorrect estimation within a defined threshold (5, 10, and 20 mm)

J3 is the mean absolute error within a defined threshold (5, 10, and 20 mm)



FAST Topological Data Analysis

Challenges:

• Chaotic and complex environments in high-rate dynamic systems. 

• High computational complexity/cost in TDA algorithms.

What is fast TDA?

We coined fast TDA as the geometric feature extraction from a point cloud inspired by conventional 
TDA features obtained from persistence homology. 

• In each window, an ellipse is fitted through the Least Square Optimization.

• Plot the ratio of  the minor axis to the major axis as an indication of  the persistence of  the ellipse.
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FAST Topological Data Analysis

Real-time estimation of  nonstationary Systems

TDA

Takens’ Embedding 

Theorem
Persistence Homology

Proposed Framework (Fast TDA)

Fast

TDA

19



FAST Topological Data Analysis

• .

• Moving window 

size:

• Time delay = 0.03 s
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Case Study #2: Experimental Data from DROPBEAR Testbed
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• DROPBEAR without Impact Hammer (Fast TDA)

• Assumption: TDA features are linearly related to the frequency

• Linear Regression: 



Case Study #2: Experimental Data from DROPBEAR Testbed
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• DROPBEAR without Impact Hammer (Fast TDA)

• Assumption: TDA features are linearly related to the frequency

• Linear Regression: 



Case Study #2: Experimental Data from DROPBEAR Testbed
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• DROPBEAR without Impact Hammer (Fast TDA)

• Assumption: TDA features are linearly related to the frequency

• Linear Regression: 



Comparison TDA – Fast TDA Results
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Computational Time

STFT Fast TDA TDA

10 ms 84 ms 960 ms



Comparison TDA – Fast TDA Results
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Major findings (Increasing frequency Implementation)

Fast TDATDA

Advantages

Disadvantages

• Online available resources

• Mechanistic 

Implementation

• Direct Implementation for 

maximum H1.

• Low Computational cost

• No available documentation 

• Application under development

• High Computational cost
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Persistence Diagram Analysis and reconstruction 

Persistence Homology 

Results
Fast TDA results
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Synthetic data with Fast TDA Diagram
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Fast TDA (Multiple Frequency Implementation)
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Challenges:

• Few training data.

• Our dynamics are highly non-
stationary.

• Sub-millisecond computations.

• Complexity of  the Point Cloud.

• Feature interpretation.



Ellipse Identification Methods
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𝒅𝒎𝒊𝒏 (𝒅𝒑𝒂𝒊𝒓𝒘𝒊𝒔𝒆 = (𝑥2 − 𝑥1)
2+(𝑦2 − 𝑦1)

2)

𝑻 = 𝑑𝑚𝑖𝑛 ∙ 1.1

⇒ 𝑑𝑖𝑗= (𝑥𝑗 − 𝑥𝑖)
2+(𝑦𝑗 − 𝑦𝑖)

2 ≤ 𝑇𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧

Method I:

• Minimum pairwise distance.

• Implementing a threshold (10%) to find 
possible links between points in the 
point cloud.

Applications:

• Good for multiple section identification 
based on minimum Threshold.

• Good for identifying intersections in 
noisy data.



Ellipse Identification Methods
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𝒅𝒎𝒊𝒏(𝒅𝑖−𝑗_𝑖𝑔𝑛𝑜𝑟𝑒𝑑 𝑟𝑎𝑛𝑔𝑒 =) (𝑥2 − 𝑥1)
2+(𝑦2 − 𝑦1)

2

⇒ 𝑑𝑚𝑖𝑛𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧

Method II:

• Minimum pairwise distance identified 
between non-consecutive points.

Applications:

• Efficient for singular node tracking.

• Optimal for maximum two ellipse 
identification.

• Better identification between sections 
and outliners.



Persistence Diagram Analysis and reconstruction 
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Synthetic Data with Fast TDA Diagram
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TDA and Fast TDA with Noisy Data

• Better identification of  hidden characteristics in noisy environments.
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Summary

• Key Outcomes:

• Fast TDA feature extractions based on persistence homology diagram.

• Fast TDA homology diagram implementation for multiple frequencies.

• Implementation of  Fast TDA for noisy environments.

• Upcoming Work/Challenges:

• Improve two dimensions of  multiple ellipse identification.

• Optimize metrics for multiple H1 features identification. 

• Relate Multiple frequency topological features to time series characteristics.

• Implementation of  three dimensions and feature extraction in multiple frequency point 
cloud.

Summary
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Thank you for your time

Questions

Questions?
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