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HIGH-RATE SYSTEMS 
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• Accelerations higher than 100 gn(gn =9.81 m/s2) in less than 1ms.

SYSTEMS EXPERIENCING HIGH-RATE DYNAMICS

• Large uncertainties in external loading.

• High levels of  non-stationarity and heavy disturbance.

• Generations of unmodeled dynamics from changes in mechanical configuration.

CHARACTERIZED BY

• Unknown or uncertain dynamics.

• Real-time modeling requirements.

• Less than 100 µs computation time per decision step.

CHALLENGES



DATASET
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High-rate laboratory dataset

• The data used in this algorithm is obtained from high-

rate dynamic experiments conducted using a drop tower 

system.

• The dataset consists of   acceleration and time 

measurements, capturing the response of  a test 

specimen subjected to sudden impact.



RESEARCH OBJECTIVE 

4

PROBLEM STATEMENT 

WHAT ARE WE SOLVING 

We are addressing the challenge of:

• Establishing a data pipeline 

• Achieving sub-millisecond inference on a resource-constrained device-raspberry pi 

• Capturing meaningful patterns in high-frequency data

• Understand and test the limits of  the raspberry pi 

• We are developing and deploying a real-time, lightweight ensemble RNN model on a Raspberry Pi to forecast high-rate dynamic 

responses



RNN Architecture Workflow
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Raw Data Input

Data Preparation

Configuration 1 Configuration 2 Configuration 3

Input Layer

LSTM Layer

Dense Layer

Attention Mechanism

Final Dense Layer

Prediction Output

Input Layer

LSTM Layer

Dense Layer

Input Layer

LSTM Layer

Dense Layer



PRIOR WORK: BENCHMARK 
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Reference Benchmark:

• We benchmark our implementation against the work by Barzegar et al. (2022), which introduced an ensemble of  RNNs with LSTM 

cells for high-rate structural health monitoring (HRSHM).

• Their system achieved:

• 25 μs per timestep (inference time)

• High accuracy on experimental drop tower data

• Robust performance using multi-rate sampling and attention

• This benchmark serves as our performance target for real-time inference on edge devices like the Raspberry Pi.

• Optimal goal is <  100us , however  < 1ms is acceptable.



INITIAL RESULTS 
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• Deployed the model on raspberry pi

• The total execution time as well as time per 

timestep was out of  the  threshold Metric Local Machine Raspberry pi 

Prediction runtime 2.62 s 5.37s

Mean Absolute 
Error(MAE)

1.752 2.10

Mean Squared 
Error(MSE)

83.91 144.63

Root Mean Squared 
Error(RMSE)

9.16 12.02

R-squared (R²) 0.94 0.90

PERFORMANCE RESULTS  

Predicted vs Actual results  from initial test 



RESULTS : TENSORFLOW-LITE ( TFLITE ) ON RASPBERRY PI 

8

Tensor flow-lite ?

• A lightweight version of  TensorFlow optimized for edge 

devices

• Designed for fast inference 

• Reduce overall computational time 

Workflow 

• Train the model on my laptop 

• Converted model .h5  to .tflite

• Deploy on raspberry pi 4 

Computational Time

Tflite  time per timestep  3.68 ms

Tflite  total runtime 1.125s



VISUAL COMPARISON BETWEEN TFLITE AND TENSORFLOW 
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Predicted vs Actual results  from tflite test  Predicted vs Actual results  from initial test 



SYSTSEM ARCHITECTURE : END-TO-END PIPELINE 
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Ensemble RNN

Signal acquisition.

Signal-ADC module- I2C -Pi. Pre-processing Inference 

Output:Prediction



TRAINING PIPELINE 
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Data

Data Preprocessing
• Delay embedding 

scaling  

Model Optimization
• Adam 
• Early stopping 

Save weights Model 

Model Training Phase  

Pretraining 
50 epochs 

Finetuning
20 epochs

Validation 



RNN ARCHITECTURE   
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Multi-rate sampler Parallel RNN Computing 
Linear neuron

Linear combinations of  RNN outputs
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• How much attention the model assigns to 

each input branch.

• High weights (e.g., τ=2, d=15 and τ=5, 

d=14) indicate that the model found these 

branches most informative for predicting 

the output.

• Lower weights (e.g., τ=8, d=12; τ=11, 

d=10; τ=14, d=8) suggest these inputs 

contributed less to the model’s prediction 

on average.

UNDERSTANDING ATTENTION MECHANISM 
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• Understand the impact of  each input branch in the 

algorithm 

• Removing τ=2, d=15 causes the largest performance 

drop (↑MAE).

• τ=11, d=10 and τ=5, d=14 also have strong 

contributions.

• Branches with low attention τ=14, d=8  have minimal 

impact.

UNDERSTANDING EACH INPUT BRANCH  

Results of  branch analysis 



LSTM FROM SCRATCH 
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Objective 
• Implemented  a linear algebra-based model.
• Demonstrate a custom implementation of  an LSTM 

using only NumPy.

Why This Matters:

•Understanding low-level details is crucial for debugging, 
optimizing, and extending LSTMs.

Key Questions:
•How does the LSTM work under the hood?
•What are the challenges of  implementing it from 
scratch?
•How does this implementation compare to frameworks 
like TensorFlow ?

Results of  different steps in the inference loop 



RANK-REDUCTION TECHNIQUE 
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Rank reduction Technique

• Involves approximating large LSTM weight matrices with lower-rank versions, using Singular Value 

Decomposition (SVD).

• It compresses the model by eliminating redundant or less significant weight components.

• Cuts down multiply-accumulate operations, reducing inference time significantly

• Maintains comparable accuracy.

• Reduced per-sample inference time.

How it works 

• Standard LSTM layers contain large weight matrices:

    

• Apply SVD to decompose W into U Σ Vᵀ :

• Keep only top-r singular values and vectors (low-rank 

approximation):

LSTM 

Branch
Original shape Rank  reduced 

Parameter 

reduction 

Branch 1 (31, 120) 27 10.0%

Branch 2 (29, 112) 26 7.9%

Branch 3 (25, 96) 22 9.3%

Branch 4 (21, 80) 18 11.1%

Branch 5 (17, 64) 15 9.0%



RESULT OVERVIEW : RANK REDUCTION TECHNIQUE 

17

Performance Results from Rank Reduction  

Metric Uncompressed Compressed (Rank-Reduced) Change

MAE 0.0735 0.0728 -0.95%

R² 0.9842 0.9851 +0.09%

Memory footprint 47.4KB 43KB -4.4KB

Average Latency 135.966 ms 104.285 ms -23.3%

Speed-up 1.30× faster ✓

Time per 

timestep

10.47ms 8.05ms ↓ 23.1%

Total Runtime 239 sec 184.5sec ↓ 23.1%

Observations:

•  Faster Inference

•  Lower Latency & Runtime

•  Improved Accuracy : compression did    

not compromise prediction quality

•  Smaller Memory Footprint



RESULT OVERVIEW : RANK REDUCTION TECHNIQUE 
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LAB DEMONSTRATION CHALLENGES 
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1) Setup & Data Flow

•Took time to connect ADC and Raspberry Pi correctly

•I2C signal showed multiple impacts.

•Needed to check if  the right signal was reaching the 

model

2) Model Speed

•First test took over 30 minutes to finish

•Too slow for real-time use on Raspberry Pi



LAB DEMONSTRATION CHALLENGES 
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3 ) Prediction Issues

•Output didn’t match expected signal

•Delay between actual and predicted signal

•Hard to align model input and true values



CONCLUSION AND FUTURE WORK  
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• The primary goal was to successfully receive high-rate sensor data on a Raspberry Pi and run inference

• We established a full pipeline: signal acquisition → ADC → I2C → preprocessing → model inference

• Initial challenges included signal noise, alignment, and slow model runtime

• Explored different techniques tuning delays and using rank reduction to enhance quality of  prediction 

• Future work  involves a thorough parametric study to systematically investigate how changes in key 

model parameters— delay values, rank reduction ratio, and LSTM unit size—affect prediction 

accuracy, computational efficiency, and inference latency.

FUTURE WORK



QUESTIONS?
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