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HIGH-RATE SYSTEMS

SYSTEMS EXPERIENCING HIGH-RATE DYNAMICS
- Accelerations higher than 100 g (g. =9.81 m/s?) in less than 1ms.

CHARACTERIZED BY

- Large uncertainties in external loading.
« High levels of non-stationarity and heavy disturbance.

+ Generations of unmodeled dynamics from changes in mechanical configuration.
CHALLENGES
+ Unknown or uncertain dynamics.

» Real-time modeling requirements.

« Less than 100 us computation time per decision step.
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DATASET

High-rate laboratory dataset

The data used in this algorithm is obtained from high-
rate dynamic experiments conducted using a drop tower
system.

The dataset consists of acceleration and time

measurements, capturing the response of a test
specimen subjected to sudden impact.
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RESEARCH OBJECTIVE

PROBLEM STATEMENT

* We are developing and deploying a real-time, lightweight ensemble RNN model on a Raspberry P1 to forecast high-rate dynamic
responses

WHAT ARE WE SOLVING

We are addressing the challenge of:

* Establishing a data pipeline

* Achieving sub-millisecond inference on a resource-constrained device-raspberry pi
* Capturing meaningful patterns in high-frequency data

* Understand and test the limits of the raspberry p1
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RNN Architecture Workflow

Raw Data Input
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Configuration 1

Configuration 2

Configuration 3

[ Input Layer ]

[ LSTMI Layer ]

[ Dense Layer ]
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[ LSTMI Layer ]

[ Dense Layer ]
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Final Dense Layer

Prediction Output

[ Input.Layer ]

[ LSTM Layer ]

[ Dense Layer ]
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PRIOR WORK: BENCHMARK

Reference Benchmark:
* We benchmark our implementation against the work by Barzegar et al. (2022), which introduced an ensemble of RNNs with LSTM
cells for high-rate structural health monitoring (HRSHM).
* Their system achieved:
* 25 ps per timestep (inference time)
* High accuracy on experimental drop tower data
* Robust performance using multi-rate sampling and attention
* This benchmark serves as our performance target for real-time inference on edge devices like the Raspberry Pi.
* Optimal goal is < 100us , however < 1ms is acceptable.
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INITIAL RESULTS

* Deployed the model on raspberry pi

* The total execution time as well as time per PERFORMANCE RESULTS
timestep was out of the threshold m Local Machine Raspberry pi
Prediction runtime 2.62s 5.37s
Ensemble LSTM
- Mean Absolute 1.752 2.10
500 4 = Irue vaiues
=== Predictions EI'I'OF(MAE)
o Mean Squared 83.91 144.63
- Error(MSE)
. Root Mean Squared 9.16 12.02
Error(RMSE)
= R-squared (R?) 0.94 0.90
0_
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RESULTS : TENSORFLOW-LITE ( TFLITE ) ON RASPBERRY PI

Tensor flow-lite ?

* A lightweight version of TensorFlow optimized for edge _

devices - .
* Designed for fast inference Ttlite time pet timestep 3.68 ms
* Reduce overall computational time
Ttlite total runtime 1.125s

Workflow

* Train the model on my laptop
* Converted model .h5 to .tflite
* Deploy on raspberry pi 4
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SYSTSEM ARCHITECTURE : END-TO-END PIPELINE

Signal acquisition.
Signal-ADC module- I2C -P1. Pre-processing Inference

Output:Prediction
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Data Preprocessing

* Delay embedding

TRAINING PIPELINE

Model Training Phase

Pretraining
50 epochs

scaling

v

Finetuning
20 epochs

|

Model Optimization

Validation

e Adam
e Early stopping
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Multi-rate
sampling
module
(2,15)
(5,14)
(8,12)
(11,10)
(14,8)

RNN ARCHITECTURE

Multi-rate sampler

Parallel RNN Computing

]
K+1J

Linear combinations of RNN outputs

Linear neuron
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UNDERSTANDING ATTENTION MECHANISM

) ) Average Attention Weights per Branch
* How much attention the model assigns to L Ll

each input branch. 0.40
* High weights (e.g.,, =2, d=15 and =5,
d=14) indicate that the model found these 0.351
branches most informative for predicting 8304
the output. £ |
* Lower weights (e.g., 1=8, d=12; 1=11, g 0.25
d=10; 1=14, d=8) suggest these inputs c
contributed less to the model’s prediction ‘E 0.20°
on average. %015-
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UNDERSTANDING EACH INPUT BRANCH

Branch Importance Analysis

* Understand the impact of each input branch in the 3.0
algorithm

. 2.5
* Removing 1=2, d=15 causes the largest performance k5
©

drop (TMAE). =
* =11, d=10 and =5, d=14 also have strong g

contributions. % 15-
. . . m
* Branches with low attention t=14, d=8 have minimal o

° € 1.0-
impact. =
<
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Results of branch analysis
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LSTM FROM SCRATCH

Objective

* Implemented a linear algebra-based model.

* Demonstrate a custom implementation of an LSTM
using only NumPy.

Why This Matters:

*Understanding low-level details is crucial for debugging,
optimizing, and extending LSTMs.

Key Questions:

*How does the LSTM work under the hood?
*What are the challenges of implementing it from
scratch?

*How does this implementation compare to frameworks
like TensorFlow ?

ExXecution lime Tor eacn SIep in InTerence Loop
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Steps

4

Results of different steps in the inference loop
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RANK-REDUCTION TECHNIQUE

Rank reduction Technique

* Involves approximating large LSTM weight matrices with lower-rank versions, using Singular Value
Decomposition (SVD).

* It compresses the model by eliminating redundant or less significant weight components.

* Cuts down multiply-accumulate operations, reducing inference time significantly

* Maintains comparable accuracy.

* Reduced per-sample inference time.

How it works LSTM P
: : : arameter
* Standard LSTM lavers contain large weight matrices: Original shape | Rank reduced
€ R rhisaen)s Branch reduction
= in hidden ) X4 hidden

Branch 1 (31, 120) 10.0%
* Apply SVD to decompose W into U X VT Branch 2 (29, 112) 26 790,
W=UzVT
* Keep only top-rsingular values and vectors (low-rank Ehgnca & &9, 9] 22 —
approximation): Branch 4 (21, 80) 18 11.1%
W U, VT, Branch 5 (17, 64) 15 9.0%
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RESULT OVERVIEW : RANK REDUCTION TECHNIQUE

Performance Results from Rank Reduction

Observations: ____

e TFaster Inference

0.0735 0.0728 -0.95%
* Lower Latency & Runtime , .
* Improved Accuracy : compression did R 0.9842 0.9851 b
not compromise prediction quality Memory footprint 47.4KB 43KB -4.4KB
*  Smaller Memory Footprint Average Latency  135.966 ms 104.285 ms -23.3%
Speed-up 1.30% faster v
Time per 10.47ms 8.05ms 1 23.1%
timestep
Total Runtime 239 sec 184.5sec 1 23.1%

p SYETEMS AND TECHNOLOGIES 17 !(_}“.lﬁ Sl.}ﬁl | t
UNINVERSITY



RESULT OVERVIEW : RANK REDUCTION TECHNIQUE

Prediction Comparison

14+

—— Ground Truth
- Uncompressed Prediction
—-— Compressed Prediction
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Normalized Acceleration
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LLAB DEMONSTRATION CHALLENGES

1) Setup & Data Flow

*Took time to connect ADC and Raspberry Pi correctly
*I12C signal showed multiple impacts.

*Needed to check if the right signal was reaching the
model

2) Model Speed
*Hirst test took over 30 minutes to finish
*Too slow for real-time use on Raspberry Pi

Voltage (V)

400

300

100

12C Sensor Data Over Time

— 5Sensaor Data

0.00

0.02 003
Timee {s)

0.04
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LLAB DEMONSTRATION CHALLENGES

Live Signal: Predicted vs. True

. 107 — Predicted
3) Prediction Issues = WEE'C i
*Output didn’t match expected signal |
*Delay between actual and predicted signal _
. . ¥
*Hard to aligh model input and true values S o6
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CONCLUSION AND FUTURE WORK

* The primary goal was to successfully receive high-rate sensor data on a Raspberry Pi and run inference
* We established a full pipeline: signal acquisition — ADC — I2C — preprocessing — model inference

* Initial challenges included signal noise, alignment, and slow model runtime

* Explored different techniques tuning delays and using rank reduction to enhance quality of prediction

FUTURE WORK

* Future work involves a thorough parametric study to systematically investigate how changes in key
model parameters— delay values, rank reduction ratio, and LSTM unit size—affect prediction
accuracy, computational efficiency, and inference latency.
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QUESTIONS?
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