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Technical Challenges of Estimating State of High-rate Dynamic system

Dodson, Jacob, et al. "High-rate structural health monitoring and prognostics: an overview." Data Science in Engineering, Volume 9 (2021): 213-217.
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Methodologies for high-rate state estimation
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➢ Physics-enhanced machine learning (PEML) models 

❖ Finite Element model updating

➢ Real-time fusion of high-speed dynamic data augmented by model-based data 

✓ Model reduction and model-updating (offline and real-time) approaches 

➢ Uncertainty quantification (UQ) methods to enable decisions connected to 

confidences

Dodson, Jacob, et al. "High-rate structural health monitoring and prognostics: an overview." Data Science in Engineering, Volume 9 (2021): 213-217.



Downey A., et al,. “Millisecond Model Updating for Structures Experiencing Unmodeled High-Rate Dynamic Events” Mechanical Systems and Signal 

Processing 138, 2020 6

Real-time FEA model updating (1D)



FEA Computation speed for the DROPBEAR

Carroll, M., Downey, A., Dodson, J., Hong, J. and Scheppegrell, J., “Analysis of Computation Speeds of Eigenvalue Solutions for High-Rate Structural 

Health Monitoring.” 

General Eigenvalue solutions 

accurately estimates the state 

of the DROPBEAR

Solving for system’s 

frequencies accounted for 

90% of algorithm iteration time
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However, FEA model is 

limited to 23 nodes to achieve 

1ms model updating time 
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Structural Dynamic Modification

Avitabile, P., “Twenty Years of Structural Dynamic Modification- A Review,” Sound and Vibration, pp. 14-25. 2003
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Avitabile, P., “Twenty Years of Structural Dynamic Modification- A Review,” Sound and Vibration, pp. 14-25. 2003

Can the existing frequencies and mode shapes be used to 

predict new frequencies and mode shapes dues to changes

in mass and stiffness?
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Eigenvalue Modification Procedure



Local Eigenvalue Modification Procedure (LEMP)

Avitabile, P., “Twenty Years of Structural Dynamic Modification- A Review,” Sound and Vibration, pp. 14-25. 2003

Reduces the GE equation to a set of second-order 

equations 

Identifies physical changes to the system such as 

mass, stiffness or damping representing them in terms 

of frequencies or mode shapes

Model the altered state as a mixture of the initial state 

and changes made to the initial state
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What is LEMP?



Local Eigenvalue Modification Procedure (LEMP)

Avitabile, P., “Twenty Years of Structural Dynamic Modification- A Review,” Sound and Vibration, pp. 14-25. 2003

If only one change of mass or stiffness is considered, then this equations can be reduced to

The solution then reduces to a second order equation for each of the ‘m’ modes of the system
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Mass change

Stiffness change

A solver for the equation was 

formulated using Divide 

and Conquer method



Single-State change Estimation

Initial state general eigenvalue solution

Initial state of the 

system (beam). 

Construct the elemental mass and 

stiffness matrices (𝐌1 and 𝐊1 ) 

Solve the general eigenvalue problem to obtain 

the squares of the first n natural frequencies, 

and the first n modal vectors for the initial state

Initial state of the system (beam). 
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LEMP Implementation

Initial state of the 

system (beam). 

Step 1: Addition of roller condition (change)

Step 2: Spectral decomposition of Δ𝐊12

Step 3: Set truncation: include only contributing 

modes

Δ𝐊12 = (0 0 0 0 0 0 0 1e10 0 0)

T = (1 1 1 1 1 1 1 1 1 1)

𝛼 = (0 0 0 0 0 0 0 1e10 0 0)

The contributing vectors are reduced to only those values in the 8th row of each matrix. 

Altered state of the system (beam) 

with added roller condition (spring) 
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Step 4: Obtain 𝛀𝟐 using Divide and conquer 
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LEMP Implementation

Ω2 values using 

D&C and Sympy 

function “solveset” 

Step 5: Solve for new frequencies

The new natural frequencies 𝑓2 in Hz are then calculated for 

the five modes in the model utilized.



Generalized Eigenvalue and LEMP

1

3

2

4

5
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Beam frequencies at each nodes on addition of roller at node 4 for first five modes



SNR & Error mode mean absolute error (Hz) SNR dB

1 0.2989 30.02

2 0.3193 33.38

3 0.5575 33.54

4 9.8136 25.10

5 262.80 13.18

17

Generalized Eigenvalue and LEMP



• Increasing the nodes increase 

the accuracy of the model

Timing for each step Timing with element number 4 to 30. 

• <29 nodes achieves the 1ms 

times constraint

LEMP Algorithm Timing study
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Model Updating Process
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Joyce, B., Dodson, J., Laflamme, S., & Hong, J. An experimental test bed for developing high-rate structural health monitoring

methods. Shock and Vibration, 2018. 21

• The Dynamic Reproduction of Projectiles 

in Ballistic Environments for Advanced 

Research (DROPBEAR) was used to 

generate the experimental data in this 

work.

Experimental System used for Validation



Analytical: Probabilistic Roller Location Selection (Sampling) 
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Comparison Criteria
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Least square regressionError Minimization

min 

selected roller 

locations



DROPBEAR Roller Location Estimation

24

Least square regressionError Minimization

Generalized

Eigenvalue

LEMP 

estimations

LEMP estimations 

alongside Bayesian 

search space.

21-node beam model



DROPBEAR Roller Location Estimation
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21-node beam model 

extended view

LEMP estimate

Least 

square 

regression

Error 

Minimization



26

Timing Results

Least square regressionError Minimization
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Timing Results

Solver time for the Generalize Eigenvalue and LEMP



Optimal modal Configuration
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MAE iteration time Optimal configuration
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1D vs 2D Node construction
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2D Model Formulation

Shell element = solid element + plate element 

Three translational displacements in the x, y, and z 

directions, and three rotational deformations with respect to 

the x, y, and z axes. 

where di (i=1, 2, 3, 4) are the displacement vector at node i: 
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1. Construction of shape functions matrix N

2. Formulation of the strain matrix for 2D element B, and 2D plate, BI and BO. 

3. Calculation of ke and me using shape functions N and strain matrix in step 2. 

Modeling steps

2D Model Formulation
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STEP 1. Construction of shape functions matrix N that satisfies Eqs. 1 and 2

2D element 

2D plate 

Subscript

e – 2D element

p – 2D plate

2D Model Formulation
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STEP 2. Formulation of the strain matrix for 2D element B, Eq. 3 and 2D plate, BI 

and BO shown in Eqs. 4 and 5. 

2D element 

2D plate 

2D Model Formulation
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STEP 3. Calculation of ke and me using shape functions N and strain matrix in 

step 2. to obtain Eqs. 6 and 7. 

mass matrix

stiffness matrix

2D Model Formulation
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Elements in the global coordinate system 

T is the transformation matrix 

where lk, mk and nk 

(k=x, y, z) are direction 

cosines 

2D Model Formulation
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Type Poisson’s ration Young’s modulus density length width thickness

Steel 0.3 200e9 7700 kg/m3 0.3 m 0.3 m 0.006 m

4 elements – 9 nodes 900 elements – 961 nodes

The plate was modeled in a free-free mode

2D Matrices Validation
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Mode 0: 

base state Mode 1 Mode 2 Mode 3 Mode 6

Mode 7 Mode 8 Mode 9 Mode 10 Mode 11

Mode 4 Mode 5

Mode 12

elastic

 mode

FEA Simulations (4 elements plate)
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Mode 0: 

base state

Mode 1 Mode 2 Mode 3 Mode 6

Mode 7 Mode 8 Mode 9 Mode 10 Mode 11

Mode 4 Mode 5

Mode 14 Mode 15 Mode 16 Mode 17 Mode 18 Mode 19

Mode 12 Mode 13

elastic

 mode

FEA Simulations (900 elements plate)
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4 elements 900 elements

Modal frequencies
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Mode FEA GE Error (abs)

7 232.12 232.027 0.0093

8 378.77 379.044 0.274

9 515.89 515.983 0.0093

10 598.64 598.768 0.128

11 598.64 598.768 0.128

12 944.72 945.03 0.31

2D Matrices Validation
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Single state change with GE and LEMP



Estimation Timing for GE and LEMP

44

Up to 100 nodes, the LEMP algorithm can still achieve 691 µs while GE is already at 0.56 s.

Single state change with GE and LEMP



Model update accuracy and timing
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Only the first elastic mode was 

used for the frequency plot 

Single state change with GE and LEMP
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Optimal Reduced model

9 nodes 16 nodes 25 nodes

36 nodes 49 nodes 64 nodes
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Free plate

Free plate

Each reduced model are compared to a perfectly meshed free plate
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Cantilever plate

Each reduced model are compared to a perfectly meshed cantilever plate

Cantilever plate
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Free Plate to Cantilever Plate
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Local change introduction
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Local change introduction
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Error at nodes



53

Multiple state change timing with LEMP

Single state change time on 25 node plate 

GE LEMP speed

9.01 ms 0.43 ms 20 x

GE LEMP speed

36.04 ms 1.62 ms 22 x

Four state change time on 25 node plate 
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Conclusion

Developed a real-time structural model updating framework using the Local Eigenvalue Modification 

Procedure (LEMP) tailored for high-rate dynamic environments.

Achieved millisecond to microsecond-level latency in structural state estimation, significantly 

outperforming traditional general eigenvalue-based approach.

Validated LEMP on both numerical simulations and experimental testbeds (DROPBEAR), 

demonstrating robust performance under changing boundary conditions and structural 

modifications.

Extended LEMP from 1D beam systems to 2D plate structures, showcasing its versatility across 

domains and scales.
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