# REDUCED-ORDER MODAL FRAMEWORK FOR MICROSECOND UPDATING OF 2D STRUCTURAL SYSTEMS USING THE LOCAL EIGENVALUE MODIFICATION PROCEDURE

#### **Emmanuel A. Ogunniyi**

Department of Mechanical Engineering, University of South Carolina, Columbia, USA



UNIVERSITY OF SOUTH CAROLINA

#### **Contents**

- 1. Motivation
- 2. Real-time solver formulation
- 3. 1D Application (DROPBEAR Testbed)
- 4. 2D Modal formulation
- 5. 2D Implementation
- 6. Conclusions





#### **Contents**

### Motivation

- Real-time solver formulation
- 1D Application (DROPBEAR Testbed)
- 2D Modal formulation
- 2D Implementation
- Conclusion



Dodson, Jacob, et al. "High-rate structural health monitoring and prognostics: an overview." Data Science in Engineering, Volume 9 (2021): 213-217.

#### Methodologies for high-rate state estimation

- Physics-enhanced machine learning (PEML) models
- Real-time fusion of high-speed dynamic data augmented by model-based data
   ✓ Model reduction and model-updating (offline and real-time) approaches
   Finite Element model updating
- Uncertainty quantification (UQ) methods to enable decisions connected to confidences

#### **Real-time FEA model updating (1D)**



Downey A., et al,. "Millisecond Model Updating for Structures Experiencing Unmodeled High-Rate Dynamic Events" *Mechanical Systems and Signal Processing* **138**, 2020

### **FEA Computation speed for the DROPBEAR**

General Eigenvalue solutions accurately estimates the state of the DROPBEAR

However, FEA model is limited to 23 nodes to achieve 1ms model updating time

Solving for system's frequencies accounted for 90% of algorithm iteration time



#### • Motivation

# Real-time solver formulation

- 1D Application (DROPBEAR Testbed)
- 2D Modal formulation
- 2D Implementation
- Conclusions

#### **Structural Dynamic Modification**



Avitabile, P., "Twenty Years of Structural Dynamic Modification- A Review," Sound and Vibration, pp. 14-25. 2003

#### **Eigenvalue Modification Procedure**

Can the existing frequencies and mode shapes be used to predict new frequencies and mode shapes dues to changes in mass and stiffness?

Avitabile, P., "Twenty Years of Structural Dynamic Modification- A Review," Sound and Vibration, pp. 14-25. 2003

### Local Eigenvalue Modification Procedure (LEMP)

#### What is LEMP?

- Identifies physical changes to the system such as mass, stiffness or damping representing them in terms of frequencies or mode shapes
- Model the altered state as a mixture of the initial state and changes made to the initial state
- Reduces the GE equation to a set of second-order equations



#### **Local Eigenvalue Modification Procedure (LEMP)**



Avitabile, P., "Twenty Years of Structural Dynamic Modification- A Review," Sound and Vibration, pp. 14-25. 2003

#### **Single-State change Estimation**



Construct the elemental mass and stiffness matrices  $\left(M_{1} \text{ and } K_{1} \right)$ 

Solve the general eigenvalue problem to obtain the squares of the first n natural frequencies, and the first n modal vectors for the initial state



|         | (-0.000005) | 0.00011  | 0.00051  | 0.00138   | -0.00340  |
|---------|-------------|----------|----------|-----------|-----------|
|         | -0.000001   | 0.000008 | 0.000023 | 0.000046  | -0.000088 |
|         | -0.184749   | 0.862567 | 1.521322 | 1.535297  | -0.796654 |
|         | -3.95962    | 13.68743 | 10.37102 | -17.27622 | 68.83187  |
| т       | -0.64779    | 1.52565  | 0.15321  | -1.53923  | 0.260667  |
| $J_1 =$ | -6.37642    | -1.72852 | -3.28287 | -6.21277  | -80.17702 |
|         | -1.26088    | 0.420824 | -1.25908 | 1.14986   | 0.176068  |
|         | -7.43893    | -2.20332 | 13.1159  | 21.2392   | 76.3001   |
|         | -1.92314    | -1.86050 | 1.94283  | -1.87065  | -1.9711   |
|         | -7.61313    | -27.5937 | 46.6347  | -63.1058  | -96.1961  |

Τ

 $f_1 = (39 \ 261 \ 736 \ 1445 \ 2692)$ 

#### **LEMP Implementation**



Step 3: Set truncation: include only contributing modes

The contributing vectors are reduced to only those values in the 8th row of each matrix.

#### **LEMP Implementation**



**Step 5: Solve for new frequencies** 

The new natural frequencies  $f_2$  in Hz are then calculated for the five modes in the model utilized.

$$f_2 = (86 \quad 583 \quad 917 \quad 1602 \quad 1330221)$$

### **Generalized Eigenvalue and LEMP**



### **Generalized Eigenvalue and LEMP**

SNR & Error

| mode | mean absolute error (Hz) | SNR <sub>dB</sub> |
|------|--------------------------|-------------------|
| 1    | 0.2989                   | 30.02             |
| 2    | 0.3193                   | 33.38             |
| 3    | 0.5575                   | 33.54             |
| 4    | 9.8136                   | 25.10             |
| 5    | 262.80                   | 13.18             |



#### **LEMP Algorithm Timing study**



- Increasing the nodes increase the accuracy of the model
- <29 nodes achieves the 1ms times constraint



Timing with element number 4 to 30.

#### **Contents**

- Motivation
- Real-time solver formulation

# 1D Application (DROPBEAR Testbed)

- 2D Modal formulation
- 2D Implementation
- Conclusions



### **Experimental System used for Validation**

 The Dynamic Reproduction of Projectiles in Ballistic Environments for Advanced Research (DROPBEAR) was used to generate the experimental data in this work.





#### **Analytical: Probabilistic Roller Location Selection (Sampling)**



#### **Comparison Criteria**

|                                             | Error Minimization                                                           | Least square regression                                                                    |
|---------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| selected roller<br>locations                | min                                                                          | $\begin{bmatrix} a \end{bmatrix}$ (1) $= 1 = T$                                            |
| $\begin{bmatrix} x_1 & 1 \end{bmatrix}$     | $\omega_1 - \omega_{ m true}$                                                | $\begin{bmatrix} b \end{bmatrix} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$ |
| $X = \begin{vmatrix} x_2 & 1 \end{vmatrix}$ | $\mathbf{Y} = \begin{bmatrix} \omega_2 - \omega_{\text{true}} \end{bmatrix}$ | $\begin{cases} x_{\min} & -b/a < x_{\min} \end{cases}$                                     |
| $\begin{bmatrix} x_3 & 1 \end{bmatrix}$     | $\omega_3 - \omega_{\rm true}$                                               | $\mathbf{x}_c = \begin{cases} x_{\max} & -b/a > x_{\max} \end{cases}$                      |
|                                             |                                                                              | -b/a elsewhere                                                                             |

Where a and b are regression parameters such that  $\omega - \omega_{\text{true}} = ax + b$ . Therefore,  $\omega = \omega_{\text{true}}$  when x = -b/a.

### **DROPBEAR Roller Location Estimation**

#### 21-node beam model



#### **DROPBEAR Roller Location Estimation**

#### **LEMP** estimate



no sampling

Bayesian sampling

#### **Timing Results**



#### **Error Minimization**

Least square regression



#### **Timing Results**

Solver time for the Generalize Eigenvalue and LEMP



### **Optimal modal Configuration**



#### **Contents**

- Motivation
- Real-time solver formulation
- 1D Application (DROPBEAR Testbed)

# 2D Modal formulation

- 2D Implementation
- Conclusions

### **1D vs 2D Node construction**









#### Shell element = solid element + plate element

Three translational displacements in the x, y, and z directions, and three rotational deformations with respect to the x, y, and z axes.

$$\mathbf{d}_{\mathbf{e}} = \begin{cases} \mathbf{d}_1 \\ \mathbf{d}_2 \\ \mathbf{d}_3 \\ \mathbf{d}_4 \end{cases} \begin{array}{c} \text{node 1} \\ \text{node 2} \\ \text{node 3} \\ \text{node 4} \end{cases}$$

where  $d_i$  (*i*=1, 2, 3, 4) are the displacement vector at node *i*:





#### Modeling steps

- 1. Construction of shape functions matrix N
- 2. Formulation of the strain matrix for 2D element B, and 2D plate, BI and Bo.
- 3. Calculation of ke and me using shape functions N and strain matrix in step 2.

STEP 1. Construction of shape functions matrix N that satisfies Eqs. 1 and 2

#### 2D element

$$\mathbf{N}_{e} = \begin{bmatrix} N_{1} & 0 & N_{2} & 0 & N_{3} & 0 & N_{4} & 0\\ 0 & N_{1} & 0 & N_{2} & 0 & N_{3} & 0 & N_{4} \end{bmatrix}$$
(1)

2D plate

$$\mathbf{N}_{p} = \begin{bmatrix} N_{1} & 0 & 0 & N_{2} & 0 & 0 & N_{3} & 0 & 0 & N_{4} & 0 & 0\\ 0 & N_{1} & 0 & 0 & N_{2} & 0 & 0 & N_{3} & 0 & 0 & N_{4} & 0\\ 0 & 0 & N_{1} & 0 & 0 & N_{2} & 0 & 0 & N_{3} & 0 & 0 & N_{4} \end{bmatrix}$$
(2)

<u>Subscript</u>

e - 2D element p - 2D plate

STEP 2. Formulation of the strain matrix for 2D element B, Eq. 3 and 2D plate, Bi and Bo shown in Eqs. 4 and 5.

#### 2D element

$$\mathbf{B} = \mathbf{L}\mathbf{N} = \frac{1}{4} \begin{bmatrix} -\frac{1-\eta}{a} & 0 & \frac{1-\eta}{a} & 0 & \frac{1+\eta}{a} & 0 & -\frac{1+\eta}{a} & 0\\ 0 & -\frac{1-\xi}{b} & 0 & -\frac{1+\xi}{b} & 0 & \frac{1+\xi}{b} & 0 & \frac{1-\xi}{b}\\ -\frac{1-\xi}{b} & -\frac{1-\eta}{a} & -\frac{1+\xi}{b} & \frac{1-\eta}{a} & \frac{1+\xi}{b} & \frac{1+\eta}{a} & \frac{1-\xi}{b} & -\frac{1+\eta}{a} \end{bmatrix}$$
(3)

2D plate

$$\mathbf{B}^{\mathrm{I}} = \begin{bmatrix} \mathbf{B}_{1}^{\mathrm{I}} & \mathbf{B}_{2}^{\mathrm{I}} & \mathbf{B}_{3}^{\mathrm{I}} & \mathbf{B}_{4}^{\mathrm{I}} \end{bmatrix}, \qquad \mathbf{B}_{j}^{\mathrm{I}} = \begin{bmatrix} 0 & 0 & -\partial N_{j} / \partial x \\ 0 & \partial N_{j} / \partial x & 0 \\ 0 & \partial N_{j} / \partial y & -\partial N_{j} \partial y \end{bmatrix}$$
(4)

$$\mathbf{B}^{\mathbf{O}} = \begin{bmatrix} \mathbf{B}_{1}^{\mathbf{O}} & \mathbf{B}_{2}^{\mathbf{O}} & \mathbf{B}_{3}^{\mathbf{O}} & \mathbf{B}_{4}^{\mathbf{O}} \end{bmatrix}, \qquad \mathbf{B}_{j}^{\mathbf{O}} = \begin{bmatrix} \frac{\partial N_{j}}{\partial x} & 0 & N_{j} \\ \frac{\partial N_{j}}{\partial y} & -N_{j} & 0 \end{bmatrix}$$
(5)

STEP 3. Calculation of  $k_e$  and  $m_e$  using shape functions N and strain matrix in step 2. to obtain Eqs. 6 and 7.

mass matrix

$$\mathbf{m}_{e} = \int_{A} h\rho \mathbf{N}^{T} \mathbf{N} dA, \quad \mathbf{m}_{p} = \int_{A_{p}} \mathbf{N}^{T} \mathbf{I} \mathbf{N} dA \quad (6) \qquad \mathbf{I} = \begin{bmatrix} \rho h & 0 & 0\\ 0 & \rho h^{3}/12 & 0\\ 0 & 0 & \rho h^{3}/12 \end{bmatrix}$$

stiffness matrix

$$\mathbf{k}_{e} = \int_{A} h \mathbf{B}^{\mathrm{T}} \mathbf{c} \mathbf{B} \mathrm{d} \mathbf{A}, \qquad \mathbf{k}_{p} = \int_{A_{p}} \frac{h^{3}}{12} \left[ \mathbf{B}^{\mathrm{I}} \right]^{\mathrm{T}} \mathbf{c} \mathbf{B}^{\mathrm{I}} \mathrm{d} \mathbf{A} + \int_{A_{p}} \kappa h \left[ \mathbf{B}^{\mathrm{O}} \right]^{\mathrm{T}} \mathbf{c}_{s} \mathbf{B}^{\mathrm{O}} \mathrm{d} \mathbf{A}$$
(7)

Elements in the global coordinate system

$$\mathbf{K}_{e} = \mathbf{T}^{T} \mathbf{k}_{e} \mathbf{T}$$
$$\mathbf{M}_{e} = \mathbf{T}^{T} \mathbf{m}_{e} \mathbf{T}$$
$$\mathbf{T} = \begin{bmatrix} \mathbf{T}_{3} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{T}_{3} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{T}_{3} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{T}_{3} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{T}_{3} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{T}_{3} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{T}_{3} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{T}_{3} \end{bmatrix}_{24 \times 24}$$
$$\mathbf{T}_{3} = \begin{bmatrix} l_{x} & m_{x} & n_{x} \\ l_{y} & m_{y} & n_{y} \\ l_{z} & m_{z} & n_{z} \end{bmatrix}_{3 \times 3}$$
where *l*<sub>k</sub>, *m*<sub>k</sub> and *n*<sub>k</sub> (*k*=*x*, *y*, *z*) are direction cosines

#### **Contents**

- Motivation
- Real-time solver formulation
- 1D Application (DROPBEAR Testbed)
- 2D Modal formulation
- 2D Implementation
- Conclusions

#### **2D Matrices Validation**

| Туре  | Poisson's ration | Young's modulus | density    | length | width | thickness |
|-------|------------------|-----------------|------------|--------|-------|-----------|
| Steel | 0.3              | 200e9           | 7700 kg/m3 | 0.3 m  | 0.3 m | 0.006 m   |

4 elements - 9 nodes



900 elements – 961 nodes



The plate was modeled in a free-free mode

#### **FEA Simulations (4 elements plate)**



#### FEA Simulations (900 elements plate)



#### **Modal frequencies**

| Step-1         4 elements           Frame         Description         (cycles/time)           0         Increment         0: Base State         (cycles/time)           2         Mode         1: Value = -3.19909E-07 Freq =         0.0000         (cycles/time)           2         Mode         2: Value = -2.69152E-07 Freq =         0.0000         (cycles/time)           3         Mode         3: Value = -1.24332E-07 Freq =         0.0000         (cycles/time)           4         Mode         4: Value = -8.33534E-08 Freq =         0.0000         (cycles/time)           5         Mode         5: Value = -4.33065E-08 Freq =         0.0000         (cycles/time)           6         Mode         6: Value = -3.72529E-09 Freq =         0.0000         (cycles/time)           6         Mode         6: Value = 2.12713E+06 Freq =         232.12         (cycles/time)           7         Mode         7: Value =         2.12713E+06 Freq =         378.77         (cycles/time)           8         Mode         9: Value =         1.05068E+07 Freq =         515.89         (cycles/time)           10         Mode         10: Value =         1.41477E+07 Freq =         598.64         (cycles/time)           12         Mode         12  | tep Na | me      | Description                    |                      |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|--------------------------------|----------------------|---------------|
| Ad elements         rame         Index       Description         Increment       0: Base State         Mode       1: Value = -3.19909E-07 Freq =       0.0000       (cycles/time)         2       Mode       2: Value = -2.69152E-07 Freq =       0.0000       (cycles/time)         3       Mode       3: Value = -1.24332E-07 Freq =       0.0000       (cycles/time)         4       Mode       4: Value = -8.33534E-08 Freq =       0.0000       (cycles/time)         5       Mode       5: Value = -4.33065E-08 Freq =       0.0000       (cycles/time)         6       Mode       6: Value = -3.72529E-09 Freq =       0.0000       (cycles/time)         6       Mode       7: Value =       2.12713E+06 Freq =       378.77       (cycles/time)         7       Mode       7: Value =       1.05068E+07 Freq =       378.77       (cycles/time)         8       Mode       10: Value =       1.41477E+07 Freq =       598.64       (cycles/time)         9       Mode       11: Value =       3.52346E+07 Freq =       944.72       (cycles/time)         10       Mode       12: Value =       3.52346E+07 Freq =       944.72       (cycles/time)                                                                                                                | tep-1  |         |                                |                      |               |
| name         Description           Index         Description           Increment         0: Base State           Mode         1: Value = -3.19909E-07 Freq = 0.0000 (cycles/time           2         Mode         2: Value = -2.69152E-07 Freq = 0.0000 (cycles/time           3         Mode         3: Value = -1.24332E-07 Freq = 0.0000 (cycles/time           4         Mode         4: Value = -8.33534E-08 Freq = 0.0000 (cycles/time           5         Mode         5: Value = -4.33065E-08 Freq = 0.0000 (cycles/time           6         Mode         6: Value = -3.72529E-09 Freq = 0.0000 (cycles/time           6         Mode         6: Value = -3.72529E-09 Freq = 0.0000 (cycles/time           7         Mode         7: Value = 2.12713E+06 Freq = 232.12 (cycles/time           8         Mode         8: Value = 5.66377E+06 Freq = 378.77 (cycles/time           9         Mode         9: Value = 1.05068E+07 Freq = 515.89 (cycles/time           10         Mode         10: Value = 1.41477E+07 Freq = 598.64 (cycles/time           11         Mode         11: Value = 3.52346E+07 Freq = 944.72 (cycles/time           12         Mode         12: Value = 3.52346E+07 Freq = 944.72 (cycles/time                                            |        |         | 4 elements                     |                      |               |
| Index         Description           0         Increment         0: Base State           1         Mode         1: Value = -3.19909E-07 Freq =         0.0000         (cycles/time)           2         Mode         2: Value = -2.69152E-07 Freq =         0.0000         (cycles/time)           3         Mode         3: Value = -1.24332E-07 Freq =         0.0000         (cycles/time)           4         Mode         4: Value = -8.33534E-08 Freq =         0.0000         (cycles/time)           5         Mode         5: Value = -4.33065E-08 Freq =         0.0000         (cycles/time)           6         Mode         6: Value = -3.72529E-09 Freq =         0.0000         (cycles/time)           7         Mode         7: Value =         2.12713E+06 Freq =         232.12         (cycles/time)           8         Mode         8: Value =         5.66377E+06 Freq =         378.77         (cycles/time)           9         Mode         9: Value =         1.05068E+07 Freq =         598.64         (cycles/time)           11         Mode         11: Value =         1.41477E+07 Freq =         598.64         (cycles/time)           12         Mode         12: Value =         3.52346E+07 Freq =         944.72         (cycles/time) |        |         |                                |                      |               |
| Index         Description           0         Increment         0: Base State           1         Mode         1: Value = -3.19909E-07 Freq =         0.0000         (cycles/time)           2         Mode         2: Value = -2.69152E-07 Freq =         0.0000         (cycles/time)           3         Mode         3: Value = -1.24332E-07 Freq =         0.0000         (cycles/time)           4         Mode         4: Value = -8.33534E-08 Freq =         0.0000         (cycles/time)           5         Mode         5: Value = -4.33065E-08 Freq =         0.0000         (cycles/time)           6         Mode         6: Value = -3.72529E-09 Freq =         0.0000         (cycles/time)           7         Mode         7: Value =         2.12713E+06 Freq =         232.12         (cycles/time)           8         Mode         8: Value =         5.66377E+06 Freq =         378.77         (cycles/time)           9         Mode         9: Value =         1.05068E+07 Freq =         515.89         (cycles/time)           10         Mode         10: Value =         1.41477E+07 Freq =         598.64         (cycles/time)           12         Mode         12: Value =         3.52346E+07 Freq =         944.72         (cycles/time) | ame    |         |                                |                      |               |
| 0         Increment         0: Base State           1         Mode         1: Value = -3.19909E-07 Freq =         0.0000         (cycles/time           2         Mode         2: Value = -2.69152E-07 Freq =         0.0000         (cycles/time           3         Mode         3: Value = -1.24332E-07 Freq =         0.0000         (cycles/time           4         Mode         4: Value = -8.33534E-08 Freq =         0.0000         (cycles/time           5         Mode         5: Value = -4.33065E-08 Freq =         0.0000         (cycles/time           6         Mode         6: Value = -3.72529E-09 Freq =         0.0000         (cycles/time           7         Mode         7: Value =         2.12713E+06 Freq =         232.12         (cycles/time           8         Mode         8: Value =         5.66377E+06 Freq =         378.77         (cycles/time           9         Mode         9: Value =         1.05068E+07 Freq =         515.89         (cycles/time           10         Mode         10: Value =         1.41477E+07 Freq =         598.64         (cycles/time           12         Mode         12: Value =         3.52346E+07 Freq =         944.72         (cycles/time                                                | ndex   | Descrip | tion                           |                      |               |
| Mode         1: Value = -3.19909E-07 Freq =         0.0000         (cycles/time           2         Mode         2: Value = -2.69152E-07 Freq =         0.0000         (cycles/time           3         Mode         3: Value = -1.24332E-07 Freq =         0.0000         (cycles/time           4         Mode         4: Value = -8.33534E-08 Freq =         0.0000         (cycles/time           5         Mode         5: Value = -4.33065E-08 Freq =         0.0000         (cycles/time           6         Mode         6: Value = -3.72529E-09 Freq =         0.0000         (cycles/time           7         Mode         7: Value =         2.12713E+06 Freq =         232.12         (cycles/time           8         Mode         8: Value =         5.66377E+06 Freq =         378.77         (cycles/time           9         Mode         9: Value =         1.05068E+07 Freq =         515.89         (cycles/time           10         Mode         10: Value =         1.41477E+07 Freq =         598.64         (cycles/time           12         Mode         12: Value =         3.52346E+07 Freq =         944.72         (cycles/time                                                                                                              |        | Increme | nt 0: Base State               |                      |               |
| 2       Mode       2: Value = -2.69152E-07 Freq =       0.0000       (cycles/time)         3       Mode       3: Value = -1.24332E-07 Freq =       0.0000       (cycles/time)         4       Mode       4: Value = -8.33534E-08 Freq =       0.0000       (cycles/time)         5       Mode       5: Value = -4.33065E-08 Freq =       0.0000       (cycles/time)         6       Mode       6: Value = -3.72529E-09 Freq =       0.0000       (cycles/time)         7       Mode       7: Value =       2.12713E+06 Freq =       232.12       (cycles/time)         8       Mode       8: Value =       5.66377E+06 Freq =       378.77       (cycles/time)         9       Mode       9: Value =       1.05068E+07 Freq =       515.89       (cycles/time)         10       Mode       10: Value =       1.41477E+07 Freq =       598.64       (cycles/time)         12       Mode       12: Value =       3.52346E+07 Freq =       944.72       (cycles/time)                                                                                                                                                                                                                                                                                                          |        | Mode    | 1: Value = -3.19909E-07 Freq = | 0.0000               | (cycles/time) |
| 3       Mode       3: Value = -1.24332E-07 Freq =       0.0000       (cycles/time         4       Mode       4: Value = -8.33534E-08 Freq =       0.0000       (cycles/time         5       Mode       5: Value = -4.33065E-08 Freq =       0.0000       (cycles/time         6       Mode       6: Value = -3.72529E-09 Freq =       0.0000       (cycles/time         7       Mode       7: Value =       2.12713E+06 Freq =       232.12       (cycles/time         8       Mode       8: Value =       5.66377E+06 Freq =       378.77       (cycles/time         9       Mode       9: Value =       1.05068E+07 Freq =       515.89       (cycles/time         10       Mode       10: Value =       1.41477E+07 Freq =       598.64       (cycles/time         11       Mode       11: Value =       1.41477E+07 Freq =       598.64       (cycles/time         12       Mode       12: Value =       3.52346E+07 Freq =       944.72       (cycles/time                                                                                                                                                                                                                                                                                                             |        | Mode    | 2: Value = -2.69152E-07 Freq = | 0.0000               | (cycles/time) |
| 4       Mode       4: Value = -8.33534E-08 Freq =       0.0000 (cycles/time         5       Mode       5: Value = -4.33065E-08 Freq =       0.0000 (cycles/time         6       Mode       6: Value = -3.72529E-09 Freq =       0.0000 (cycles/time         7       Mode       7: Value =       2.12713E+06 Freq =       232.12 (cycles/time         8       Mode       8: Value =       5.66377E+06 Freq =       378.77 (cycles/time         9       Mode       9: Value =       1.05068E+07 Freq =       515.89 (cycles/time         10       Mode       10: Value =       1.41477E+07 Freq =       598.64 (cycles/time         11       Mode       11: Value =       1.41477E+07 Freq =       598.64 (cycles/time         12       Mode       12: Value =       3.52346E+07 Freq =       944.72 (cycles/time                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | Mode    | 3: Value = -1.24332E-07 Freq = | 0.0000               | (cycles/time) |
| 5         Mode         5: Value = -4.33065E-08 Freq =         0.0000         (cycles/time           6         Mode         6: Value = -3.72529E-09 Freq =         0.0000         (cycles/time           7         Mode         7: Value =         2.12713E+06 Freq =         232.12         (cycles/time           8         Mode         8: Value =         5.66377E+06 Freq =         378.77         (cycles/time           9         Mode         9: Value =         1.05068E+07 Freq =         515.89         (cycles/time           10         Mode         10: Value =         1.41477E+07 Freq =         598.64         (cycles/time           11         Mode         11: Value =         1.41477E+07 Freq =         598.64         (cycles/time           12         Mode         12: Value =         3.52346E+07 Freq =         944.72         (cycles/time                                                                                                                                                                                                                                                                                                                                                                                                       |        | Mode    | 4: Value = -8.33534E-08 Freq = | 0.0000               | (cycles/time) |
| 6         Mode         6: Value = -3.72529E-09 Freq =         0.0000         (cycles/time           7         Mode         7: Value =         2.12713E+06 Freq =         232.12         (cycles/time           8         Mode         8: Value =         5.66377E+06 Freq =         378.77         (cycles/time           9         Mode         9: Value =         1.05068E+07 Freq =         515.89         (cycles/time           10         Mode         10: Value =         1.41477E+07 Freq =         598.64         (cycles/time           11         Mode         11: Value =         1.41477E+07 Freq =         598.64         (cycles/time           12         Mode         12: Value =         3.52346E+07 Freq =         944.72         (cycles/time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | Mode    | 5: Value = -4.33065E-08 Freq = | 0.0000               | (cycles/time) |
| 7         Mode         7: Value = 2.12713E+06 Freq =         232.12         (cycles/time           8         Mode         8: Value =         5.66377E+06 Freq =         378.77         (cycles/time           9         Mode         9: Value =         1.05068E+07 Freq =         515.89         (cycles/time           10         Mode         10: Value =         1.41477E+07 Freq =         598.64         (cycles/time           11         Mode         11: Value =         1.41477E+07 Freq =         598.64         (cycles/time           12         Mode         12: Value =         3.52346E+07 Freq =         944.72         (cycles/time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | Mode    | 6: Value = -3.72529E-09 Freq = | <b>0</b> .0000       | (cycles/time) |
| 8         Mode         8: Value = 5.66377E+06 Freq =         378.77         (cycles/time           9         Mode         9: Value =         1.05068E+07 Freq =         515.89         (cycles/time           10         Mode         10: Value =         1.41477E+07 Freq =         598.64         (cycles/time           11         Mode         11: Value =         1.41477E+07 Freq =         598.64         (cycles/time           12         Mode         12: Value =         3.52346E+07 Freq =         944.72         (cycles/time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | Mode    | 7: Value = 2.12713E+06 Freq =  | 232.12               | (cycles/time) |
| 9         Mode         9: Value =         1.05068E+07 Freq =         515.89         (cycles/time)           10         Mode         10: Value =         1.41477E+07 Freq =         598.64         (cycles/time)           11         Mode         11: Value =         1.41477E+07 Freq =         598.64         (cycles/time)           12         Mode         12: Value =         3.52346E+07 Freq =         944.72         (cycles/time)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | Mode    | 8: Value = 5.66377E+06 Freq =  | 378.77               | (cycles/time) |
| 10         Mode         10: Value =         1.41477E+07 Freq =         598.64         (cycles/tim           11         Mode         11: Value =         1.41477E+07 Freq =         598.64         (cycles/tim           12         Mode         12: Value =         3.52346E+07 Freq =         944.72         (cycles/tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | Mode    | 9: Value = 1.05068E+07 Freq =  | 5 <mark>15.89</mark> | (cycles/time) |
| 11 Mode 11: Value = 1.41477E+07 Freq = 598.64 (cycles/tim<br>12 Mode 12: Value = 3.52346E+07 Freq = 944.72 (cycles/tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0      | Mode    | 10: Value = 1.41477E+07 Freq = | 598.6 <mark>4</mark> | (cycles/time) |
| 12 Mode 12: Value = 3.52346E+07 Freq = 944.72 (cycles/tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1      | Mode    | 11: Value = 1.41477E+07 Freq = | 598.6 <mark>4</mark> | (cycles/time) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2      | Mode    | 12: Value = 3.52346E+07 Freq = | 944.72               | (cycles/time) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |         |                                |                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |         |                                |                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |         |                                |                      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |         |                                |                      |               |

| 🔷 Step/  | Frame   |                            |      |          |                                  | × |
|----------|---------|----------------------------|------|----------|----------------------------------|---|
| Step Nar | ne      | Description                |      |          |                                  |   |
| Step-1   |         | -                          |      |          |                                  |   |
|          |         | 900 elei                   | ne   | ents     |                                  |   |
| Frame    |         |                            |      |          |                                  |   |
| Index    | Descrip | ion                        |      |          |                                  |   |
| 0        | Increme | nt – 0: Base State         |      |          |                                  |   |
| 1        | Mode    | 1: Value = 2.11708E-06 Fre | q =  | 2.31573E | - <mark>04 (</mark> cycles/time) |   |
| 2        | Mode    | 2: Value = 3.40977E-06 Fre | q =  | 2.93888E | •04 (cycles/time)                |   |
| 3        | Mode    | 3: Value = 5.05996E-06 Fre | q =  | 3.58009E | - <mark>04 (</mark> cycles/time) |   |
| 4        | Mode    | 4: Value = 6.18608E-06 Fre | q =  | 3.95847E | - <mark>04</mark> (cycles/time)  |   |
| 5        | Mode    | 5: Value = 7.60294E-06 Fre | q =  | 4.38845E | - <mark>04</mark> (cycles/time)  |   |
| 6        | Mode    | 6: Value = 1.44800E-05 Fre | q =  | 6.05625E | -04 (cycles/time)                |   |
| 7        | Mode    | 7: Value = 1.89263E+06 Fre | eq = | 218.95   | (cycles/time)                    |   |
| 8        | Mode    | 8: Value = 4.05830E+06 Fre | eq = | 320.62   | (cycles/time)                    |   |
| 9        | Mode    | 9: Value = 6.23002E+06 Fre | eq = | 397.25   | (cycles/time)                    |   |
| 10       | Mode    | 10: Value = 1.26330E+07 Fr | eq = | 565.68   | (cycles/time)                    |   |
| 11       | Mode    | 11: Value = 1.26330E+07 Fr | eq = | 565.68   | (cycles/time)                    |   |
| 12       | Mode    | 12: Value = 3.95886E+07 Fr | eq = | 1001.4   | (cycles/time)                    |   |
| 13       | Mode    | 13: Value = 3.95886E+07 Fr | eq = | 1001.4   | (cycles/time)                    |   |
| 14       | Mode    | 14: Value = 4.20637E+07 Fr | eq = | 1032.2   | (cycles/time)                    |   |
| 15       | Mode    | 15: Value = 5.01417E+07 Fr | eq = | 1127.0   | (cycles/time)                    |   |
| 16       | Mode    | 16: Value = 6.26389E+07 Fr | eq = | 1259.6   | (cycles/time)                    |   |
| 17       | Mode    | 17: Value = 1.15204E+08 Fr | eq = | 1708.3   | (cycles/time)                    |   |
| 18       | Mode    | 18: Value = 1.15204E+08 Fr | eq = | 1708.3   | (cycles/time)                    |   |
| 19       | Mode    | 19: Value = 1.46137E+08 Fr | eq = | 1924.0   | (cycles/time)                    |   |

#### **2D Matrices Validation**









#### Single state change with GE and LEMP





#### Estimation Timing for GE and LEMP

| sin          | gle change calcul | ng:  | gene<br>eige | ralized<br>nvalue | ]           |           |               |            |
|--------------|-------------------|------|--------------|-------------------|-------------|-----------|---------------|------------|
| no. of nodes | no. of element    | DOF  | matrix size  | freq (Hz)         | time GE (s) | freq (Hz) | time LEMP (s) | error (Hz) |
| 9            | 4                 | 54   | 54 x 54      | 232.027           | 0.001093    | 227.099   | 0.000384      | 4.928      |
| 16           | 9                 | 96   | 96 x 96      | 228.458           | 0.00320     | 226.120   | 0.000456      | 2.338      |
| 25           | 16                | 150  | 150 x 150    | 224.914           | 0.009031    | 224.123   | 0.000458      | 0.791      |
| 36           | 25                | 216  | 216 x 216    | 222.886           | 0.024529    | 223.01    | 0.000464      | -0.124     |
| 49           | 36                | 294  | 294 x 294    | 221.78            | 0.067579    | 222.1     | 0.000399      | -0.32      |
| 64           | 49                | 384  | 384 x 384    | 221.599           | 0.212773    | 221.67    | 0.000475      | -0.071     |
| 81           | 64                | 486  | 486 x 486    | 220.837           | 0.348656    | 220.610   | 0.000539      | 0.227      |
| 100          | 81                | 600  | 600 x 600    | 219.975           | 0.559744    | 219.41    | 0.000691      | 0.565      |
| 121          | 100               | 726  | 726 x 726    | 222.409           | 0.994675    | 221.919   | 0.000890      | 0.488      |
| 144          | 121               | 864  | 864 x 864    | 218.505           | 2.197694    | 217.68    | 0.001285      | 0.825      |
| 169          | 144               | 1014 | 1014 x 1014  | 219.147           | 4.075451    | 219.234   | 0.001523      | -0.087     |

Up to 100 nodes, the LEMP algorithm can still achieve 691  $\mu$ s while GE is already at 0.56 s.

#### Single state change with GE and LEMP



#### **Optimal Reduced model**



#### Free plate

Each reduced model are compared to a perfectly meshed free plate

Free plate



### **Cantilever plate**

Each reduced model are compared to a perfectly meshed cantilever plate



#### **Free Plate to Cantilever Plate**



free plate nodal construction

fix nodes 1,2,3,4 and 5

#### Local change introduction





#### Local change introduction



















#### **Error** at nodes

|      |          | %        | error at no | des      |          |          | %        | error at no | des      |          |          | %        | error at no | des      |          |          | %        | error at no | des      |          |                        |
|------|----------|----------|-------------|----------|----------|----------|----------|-------------|----------|----------|----------|----------|-------------|----------|----------|----------|----------|-------------|----------|----------|------------------------|
| mode | 6        | 7        | 8           | 9        | 10       | 11       | 12       | 13          | 14       | 15       | 16       | 17       | 18          | 19       | 20       | 21       | 22       | 23          | 24       | 25       | $\operatorname{count}$ |
| 1    | 2.532117 | 1.987089 | 2.686049    | 2.039476 | 2.574719 | 5.890645 | 7.965409 | 7.192803    | 8.101189 | 5.912551 | 9.497408 | 11.3315  | 22.76656    | 11.47762 | 9.488718 | 5.442432 | 8.088518 | 12.67039    | 8.049198 | 5.424116 | 0                      |
| 2    | 1.748493 | 2.466974 | 2.074156    | 2.063405 | 1.719738 | 4.619095 | 7.172105 | 9.368445    | 6.82218  | 4.638922 | 10.38528 | 7.715702 | 2.41712     | 7.677894 | 10.38767 | 7.161676 | 12.92952 | 6.074223    | 12.94797 | 7.218211 | 2                      |
| 3    | 0.953186 | 1.316698 | 0.813959    | 1.117853 | 0.946491 | 1.622843 | 3.017837 | 0.802334    | 2.8354   | 1.606298 | 2.176486 | 19.31973 | 11.59083    | 18.66725 | 2.193322 | 3.166835 | 1.183541 | 2.701019    | 1.199321 | 3.237814 | 15                     |
| 4    | 0.521762 | 1.485406 | 2.826987    | 1.614323 | 0.552273 | 3.596503 | 7.637173 | 4.136615    | 7.63092  | 3.629259 | 8.734441 | 12.74896 | 1.519571    | 12.62904 | 8.707256 | 5.018165 | 9.199682 | 6.276045    | 9.173027 | 5.037879 | 9                      |
| 5    | 4.700076 | 6.679389 | 3.521589    | 6.013716 | 4.744664 | 7.170588 | 9.990671 | 4.552547    | 9.260694 | 7.141813 | 6.561462 | 4.950766 | 6.674359    | 5.247573 | 6.607372 | 7.077355 | 7.587955 | 6.927779    | 7.587955 | 7.083466 | 2                      |
| 6    | 5.323287 | 6.451122 | 4.052768    | 6.503801 | 5.323287 | 3.910083 | 7.563697 | 4.103226    | 7.73393  | 3.9568   | 10.35219 | 5.378282 | 10.129      | 5.434294 | 10.38407 | 4.592651 | 8.067761 | 5.231131    | 8.051535 | 4.599511 | 2                      |
| 7    | 0.766019 | 0.979711 | 1.636351    | 0.986735 | 0.801727 | 3.834675 | 4.717042 | 5.510132    | 4.827965 | 3.864438 | 3.524868 | 2.327415 | 6.722739    | 2.226873 | 3.543342 | 2.234841 | 4.55528  | 5.883271    | 4.655953 | 2.35604  | 17                     |
| 8    | 0.615614 | 3.333333 | 3.5367      | 3.298704 | 0.708041 | 7.865297 | 2.171119 | 5.033873    | 1.990343 | 7.854778 | 3.76996  | 2.219439 | 9.296427    | 2.279138 | 3.821924 | 7.067435 | 3.274497 | 4.274147    | 3.215992 | 7.256163 | 11                     |
| 9    | 7.734375 | 3.905734 | 5.084374    | 3.62077  | 7.997004 | 6.362704 | 11.00658 | 16.736      | 10.7485  | 6.453861 | 9.132671 | 9.428189 | 5.873433    | 9.418856 | 9.002907 | 10.38084 | 7.378596 | 12.53273    | 7.524065 | 10.44199 | 0                      |
| 10   | 7.12605  | 3.78518  | 2.77063     | 3.562164 | 7.038741 | 15.00322 | 10.56295 | 15.25906    | 10.64363 | 14.99295 | 7.980973 | 10.4069  | 7.539742    | 10.28782 | 8.098754 | 15.11541 | 12.33968 | 14.06895    | 12.4735  | 15.21763 | 0                      |
| 11   | 5.682823 | 10.78792 | 7.697923    | 10.6093  | 5.700386 | 17.08992 | 11.37399 | 9.440886    | 11.26693 | 17.09602 | 17.397   | 14.18785 | 18.35887    | 14.21432 | 17.44371 | 15.27005 | 18.39393 | 16.90804    | 18.48926 | 15.27005 | 0                      |
| 12   | 16.41868 | 13.98043 | 16.83436    | 14.0326  | 16.50432 | 18.69787 | 18.48873 | 13.96       | 18.58958 | 18.63622 | 26.12778 | 24.16503 | 18.38648    | 24.10023 | 26.1124  | 18.29072 | 14.16208 | 21.24383    | 14.14289 | 18.4094  | 0                      |
| 13   | 10.00126 | 16.19612 | 18.27292    | 16.28644 | 9.983127 | 5.86878  | 17.09173 | 16.32266    | 17.25441 | 5.889439 | 10.39051 | 14.89921 | 21.69847    | 15.00948 | 10.35073 | 2.5435   | 13.18581 | 16.70431    | 13.16257 | 2.571872 | 1                      |
| 14   | 12.15216 | 7.737914 | 5.404227    | 7.856141 | 12.17155 | 17.33568 | 7.093032 | 7.79415     | 7.11567  | 17.34773 | 9.475202 | 11.05434 | 11.52126    | 11.05639 | 9.475202 | 10.13109 | 10.91125 | 3.439656    | 10.95864 | 10.1351  | 0                      |
| 15   | 12.0695  | 12.4493  | 12.30422    | 12.37868 | 12.09239 | 17.03949 | 22.45205 | 22.63504    | 22.4595  | 17.26478 | 8.317759 | 20.35461 | 12.34558    | 20.46007 | 8.32779  | 10.62872 | 15.2532  | 18.76341    | 15.25852 | 10.55855 | 0                      |





### **Multiple state change timing with LEMP**



Single state change time on 25 node plate

| GE      | LEMP    | speed |  |  |  |
|---------|---------|-------|--|--|--|
| 9.01 ms | 0.43 ms | 20 x  |  |  |  |

Four state change time on 25 node plate

| GE       | LEMP    | speed |  |  |  |
|----------|---------|-------|--|--|--|
| 36.04 ms | 1.62 ms | 22 x  |  |  |  |



#### **Contents**

- Motivation
- Real-time solver formulation
- 1D Application (DROPBEAR Testbed)
- 2D Modal formulation
- 2D Implementation
- Conclusions

#### **Conclusion**

- Developed a real-time structural model updating framework using the Local Eigenvalue Modification Procedure (LEMP) tailored for high-rate dynamic environments.
- Achieved millisecond to microsecond-level latency in structural state estimation, significantly outperforming traditional general eigenvalue-based approach.
- Validated LEMP on both numerical simulations and experimental testbeds (DROPBEAR), demonstrating robust performance under changing boundary conditions and structural modifications.
- Extended LEMP from 1D beam systems to 2D plate structures, showcasing its versatility across domains and scales.

#### Acknowledgement



This material is based upon work supported by the Air Force Office of Scientific Research (AFOSR) through award no. FA9550-21-1-0083. This work is also partly supported by the National Science Foundation Grant numbers 1850012 and 1956071. The support of these agencies is gratefully acknowledged. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors, and they do not necessarily reflect the views of the National Science Foundation or the United States Air Force.

# THANK YOU!

## **Questions or Comments?**

Emmanuel A. Ogunniyi Ph.D candidate, Mech Engr. ogunniyi@email.sc.edu

