MICROSECOND MODEL UPDATING FOR 2D STRUCTURAL SYSTEMS USING THE LOCAL EIGENVALUE MODIFICATION PROCEDURE (LEMP)

Emmanuel A. Ogunniyi¹, Alexander B. Vereen¹, Austin R.J. Downey^{1,2} ¹Department of Mechanical Engineering, University of South Carolina, Columbia, USA ²Department of Civil and Environmental Engineering, University of South Carolina, Columbia, USA

UNIVERSITY OF SOUTH CAROLINA

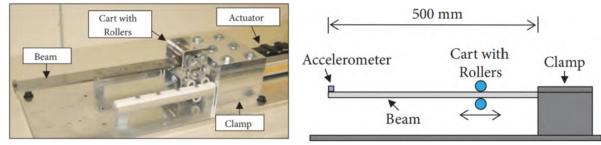
	High-rate Overview	
	Deskaround	
	Background	
	Method	
<u></u>		_
\geq	Results	

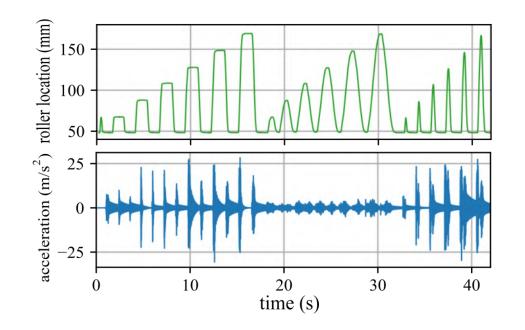
Civil Structures Exposed to blast

High-rate **Description of High-rate Dynamics** Background Method Results Overview High-rate (<100ms) The deceleration event in drop tower tests typically lasts for 0.5ms -test 1 accel accel 4 est 2 accel est 2 accel (kg.) test 3 accel test 3 accel 4 accel 1 High-amplitude (acceleration > 100 g) -20.2 0.25 0.3 0.35 0.4 time (ms) Large uncertainties in the external loads. . High levels of nonstationarity and heavy disturbance. • Generations of unmodeled dynamics from changes in • mechanical configuration. GitHub High-rate Overview

DROPBEAR experimental testbed:

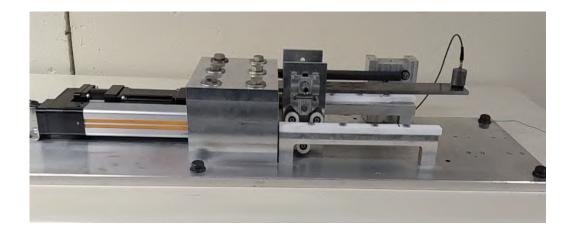
- The Dynamic Reproduction of Projectiles in Ballistic Environments for Advanced Research (DROPBEAR) was used to generate the experimental data in this work.
- Cantilever beam with a controllable roller to alter the state.
- Acceleration and pin location are recorded.
- Dataset available on GitHub at: <u>https://github.com/High-Rate-SHM-Working-Group/Dataset-2-DROPBEAR-Acceleration-vs-Roller-Displacement</u>

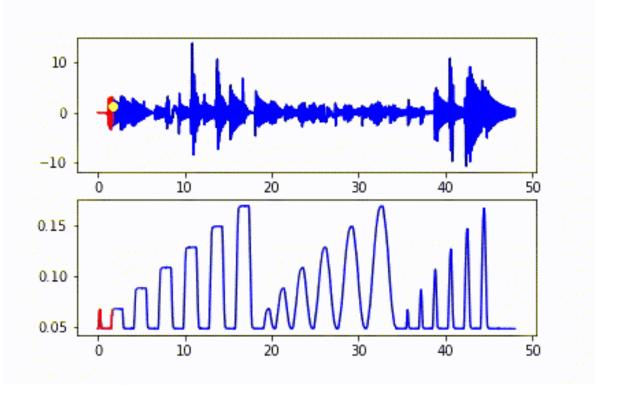




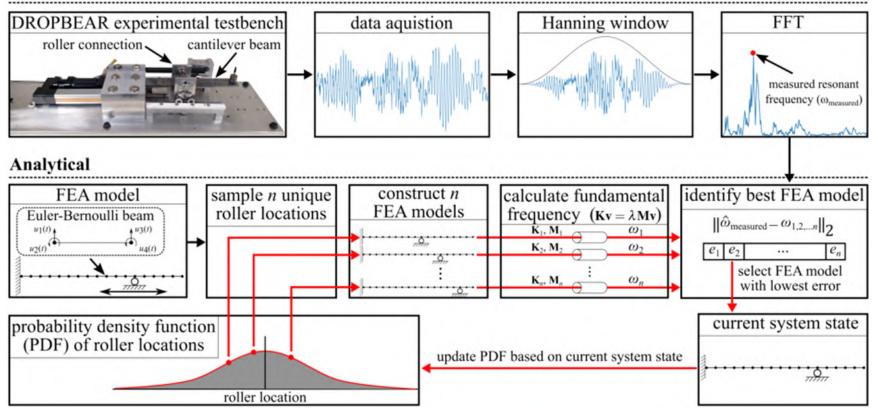
Joyce, B., Dodson, J., Laflamme, S., & Hong, J. *An experimental test bed for developing high-rate structural health monitoring methods*. Shock and Vibration, 2018.

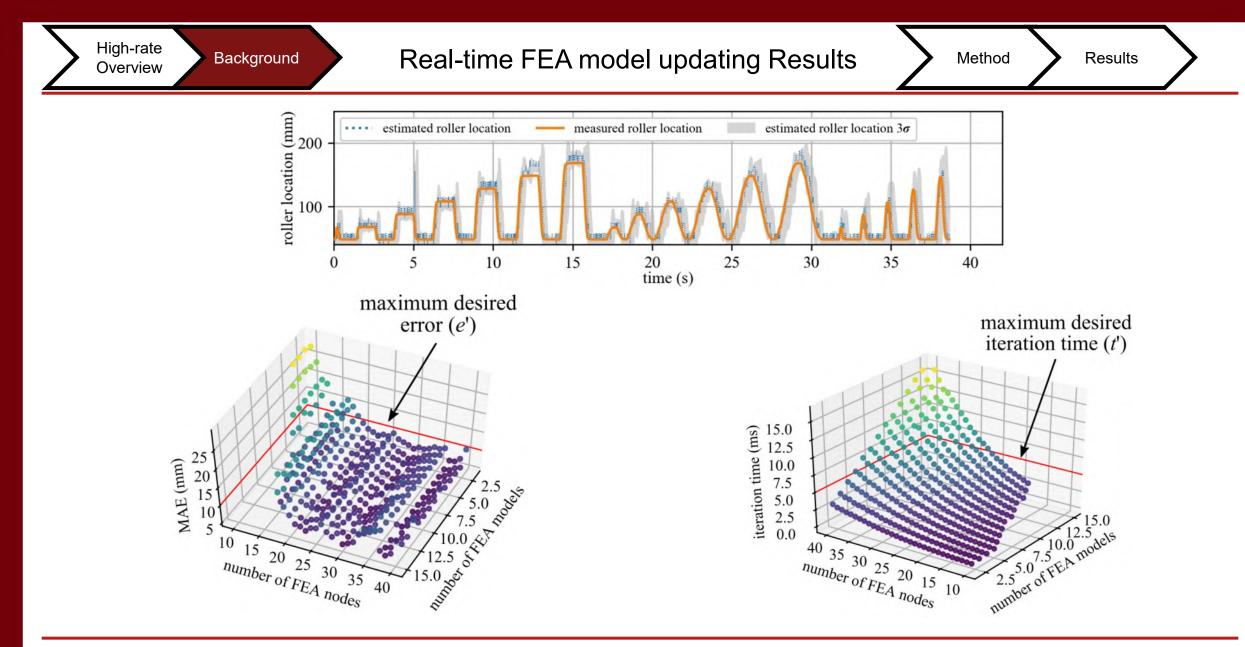
High-rate Overview





Experimental





Downey A., et al,. "Millisecond Model Updating for Structures Experiencing Unmodeled High-Rate Dynamic Events" *Mechanical Systems and Signal Processing* **138**, 2020

FEA Computation speed for the DROPBEAR

Method

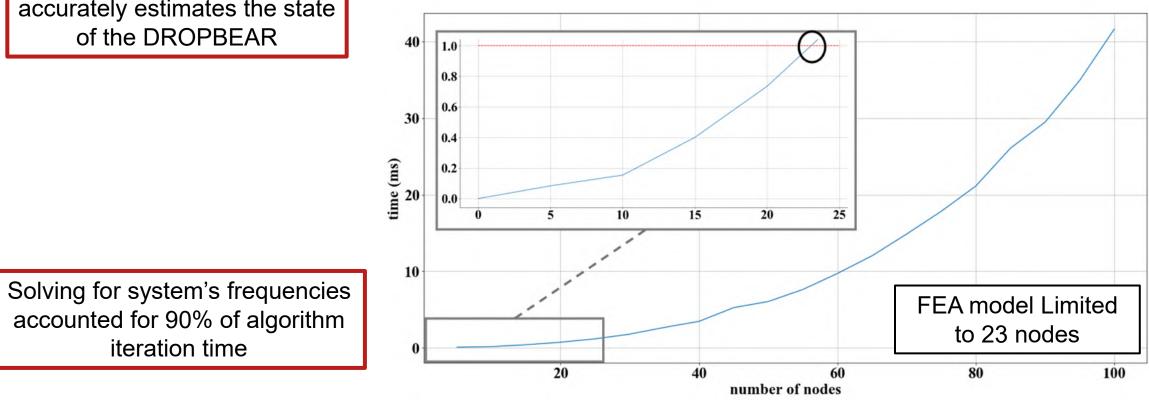
Results

General Eigenvalue solutions accurately estimates the state of the DROPBEAR

Background

High-rate

Overview



Local Eigenvalue Modification Procedure (LEMP)

Method

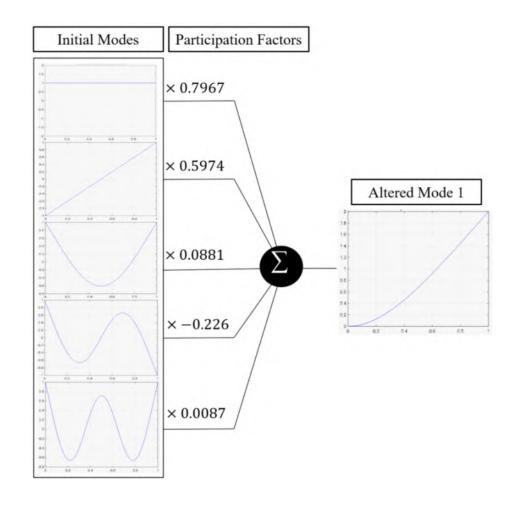
Developed by Wesseinburger in 1968

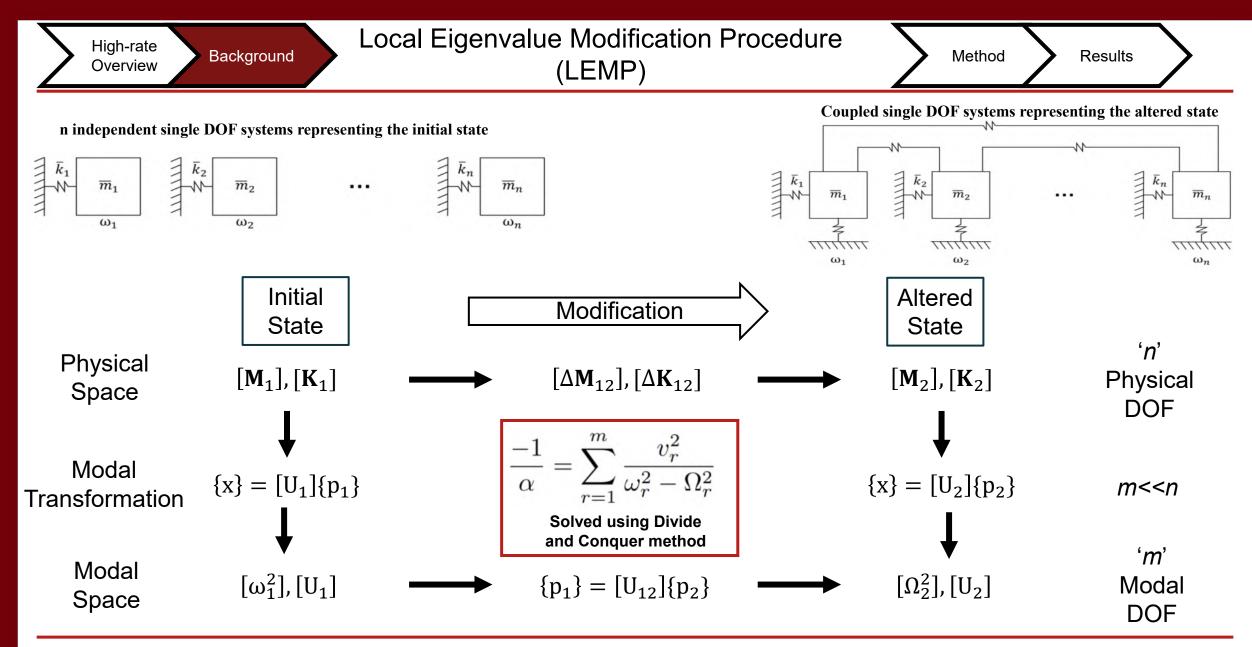
Background

High-rate

Overview

- Identifies physical changes to the system such as mass, stiffness or damping using changes such as frequencies or mode shapes
- Model the altered state as a mixture of the initial state and changes made to the initial state
- Reduces the GE equation to a set of second-order equations



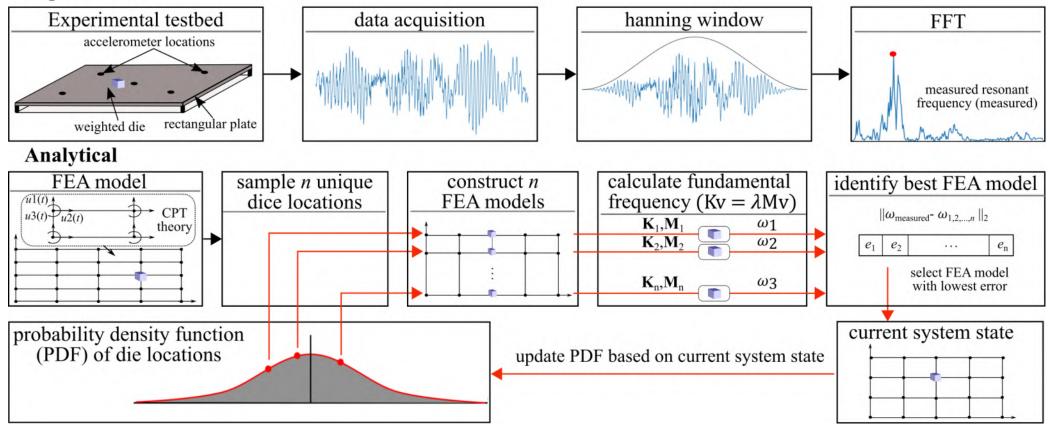


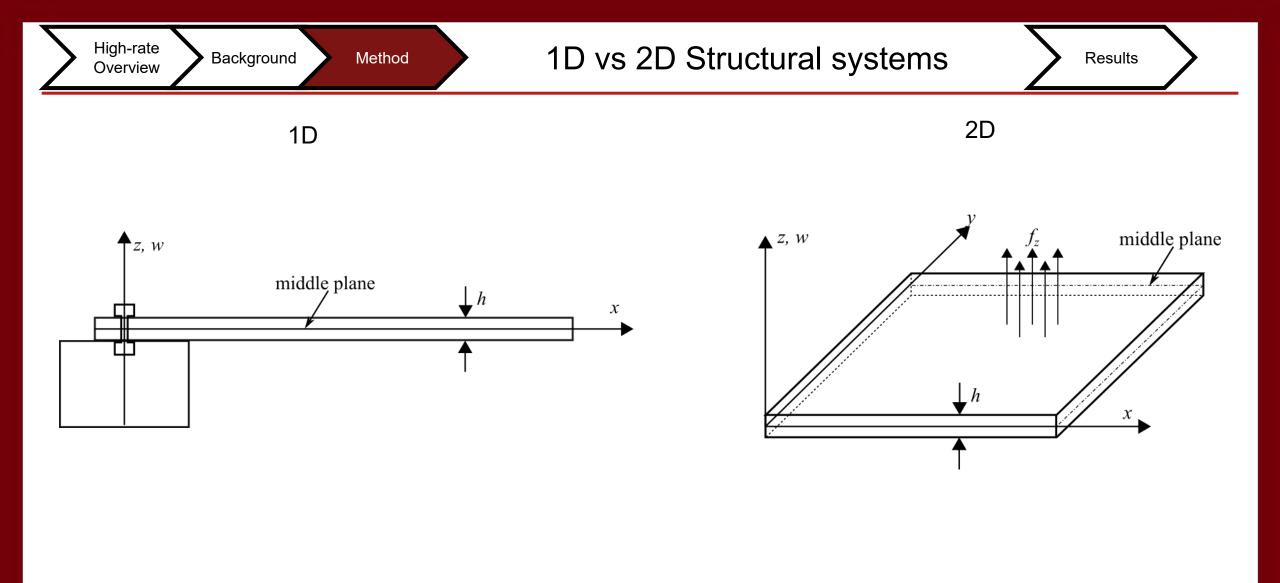
Avitabile, P., "Twenty Years of Structural Dynamic Modification- A Review," Sound and Vibration, pp. 14-25. 2003

Drnek, C. R., "Local eigenvalue modification procedure for real-time model updating of structures experiencing high-rate dynamic events," (2020).

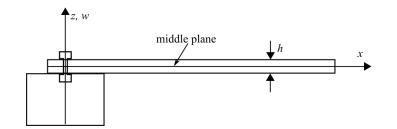
Current methodology

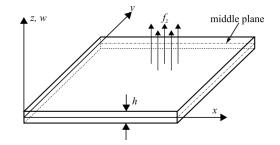
Experimental

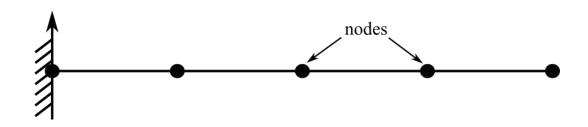


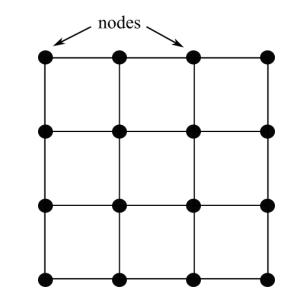


1D vs 2D Node construction









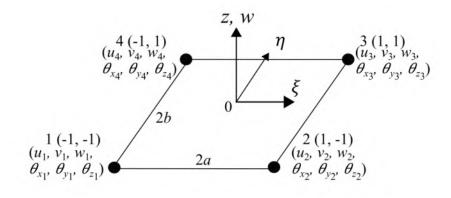
2D Model Formulation

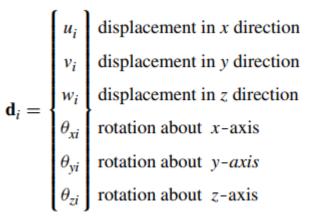
Shell element

Three translational displacements in the x, y, and z directions, and three rotational deformations with respect to the x, y, and z axes.

$$\mathbf{d}_{\mathbf{e}} = \begin{cases} \mathbf{d}_1 & \text{node 1} \\ \mathbf{d}_2 & \text{node 2} \\ \mathbf{d}_3 & \text{node 3} \\ \mathbf{d}_4 & \text{node 4} \end{cases}$$

where d_i (*i*=1, 2, 3, 4) are the displacement vector at node *i*:





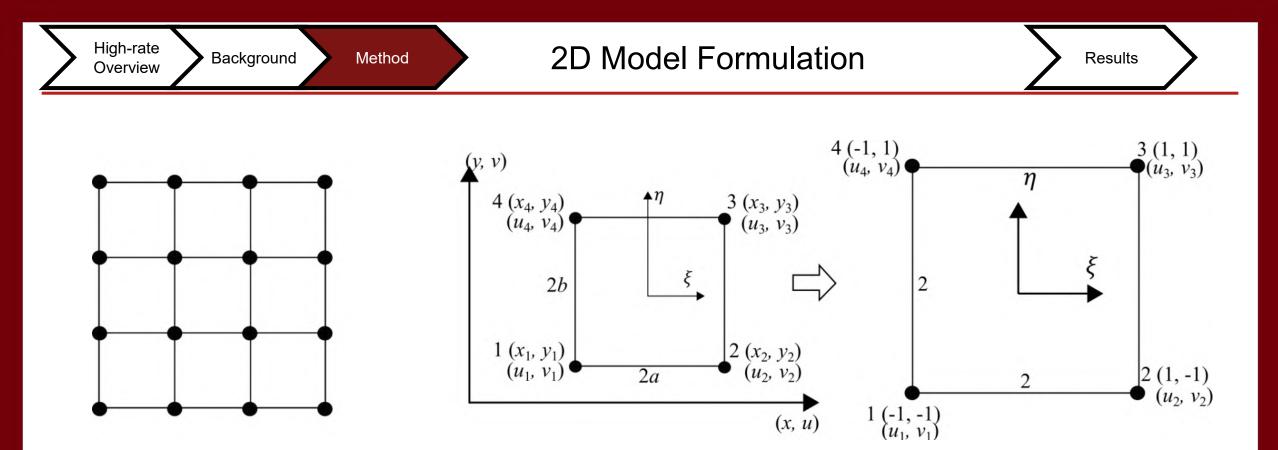


Figure 1. Shell element formation and its coordinate system where; (a) represents the nodal construction on the element; (b) shows the coordinate system of a 2D solid element with 2 DOFs; (c) shows the transformation of the coordinate system with dimension; (d) depicts a plate structure, and; (e) is the shell coordinate system that combines the 2D solid element and plate structure.

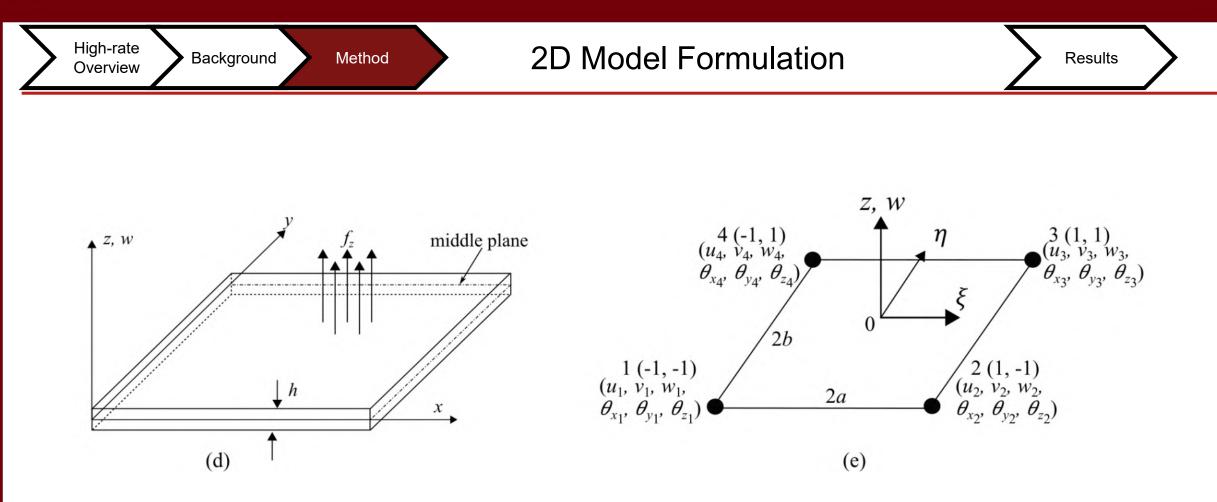


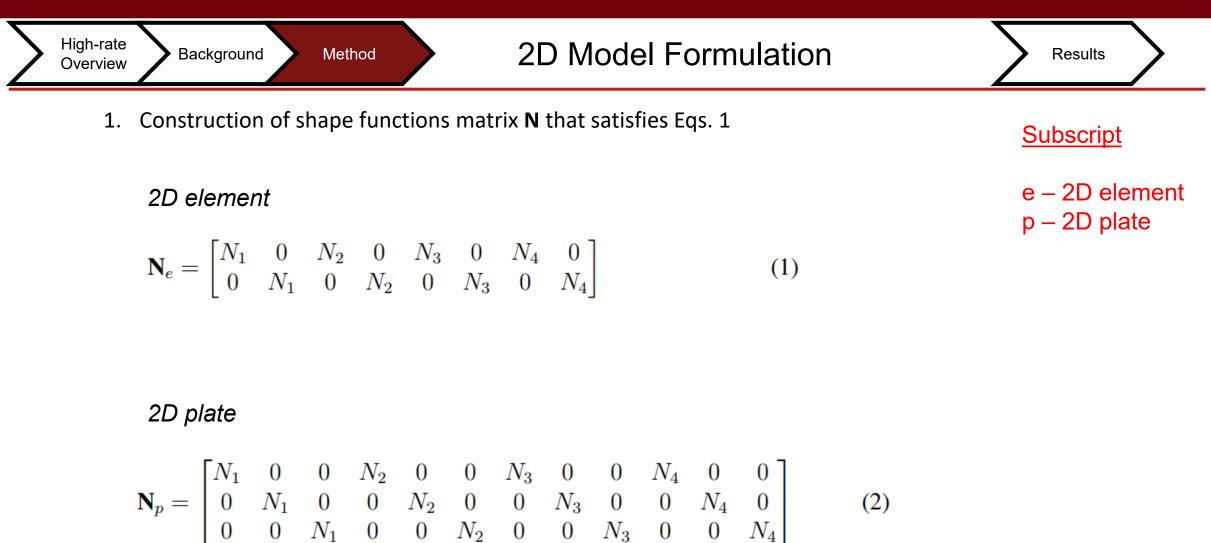
Figure 1. Shell element formation and its coordinate system where; (a) represents the nodal construction on the element; (b) shows the coordinate system of a 2D solid element with 2 DOFs; (c) shows the transformation of the coordinate system with dimension; (d) depicts a plate structure, and; (e) is the shell coordinate system that combines the 2D solid element and plate structure.

Modeling steps

1. Construction of shape functions matrix **N** that satisfies Eqs. 1

2. Formulation of the strain matrix for 2D element **B**, Eq. 3 and 2D plate, **B**I and **BO** shown in Eqs. 4 and 5.

3. Calculation of **k**e and **m**e using shape functions **N** and strain matrix in step 2 to obtain Eqs. 5 and 6.



2. Formulation of the strain matrix for 2D element **B**, Eq. 3 and 2D plate, **B**I and **BO** shown in Eqs. 4 and 5.

2D element

$$\mathbf{B} = \mathbf{L}\mathbf{N} = \frac{1}{4} \begin{bmatrix} -\frac{1-\eta}{a} & 0 & \frac{1-\eta}{a} & 0 & \frac{1+\eta}{a} & 0 & -\frac{1+\eta}{a} & 0\\ 0 & -\frac{1-\xi}{b} & 0 & -\frac{1+\xi}{b} & 0 & \frac{1+\xi}{b} & 0 & \frac{1-\xi}{b}\\ -\frac{1-\xi}{b} & -\frac{1-\eta}{a} & -\frac{1+\xi}{b} & \frac{1-\eta}{a} & \frac{1+\xi}{b} & \frac{1+\eta}{a} & \frac{1-\xi}{b} & -\frac{1+\eta}{a} \end{bmatrix}$$
(3)

2D plate

$$\mathbf{B}^{\mathrm{I}} = \begin{bmatrix} \mathbf{B}_{1}^{\mathrm{I}} & \mathbf{B}_{2}^{\mathrm{I}} & \mathbf{B}_{3}^{\mathrm{I}} & \mathbf{B}_{4}^{\mathrm{I}} \end{bmatrix}, \qquad \mathbf{B}_{j}^{\mathrm{I}} = \begin{bmatrix} 0 & 0 & -\partial N_{j} / \partial x \\ 0 & \partial N_{j} / \partial x & 0 \\ 0 & \partial N_{j} / \partial y & -\partial N_{j} \partial y \end{bmatrix}$$
(4)

$$\mathbf{B}^{\mathbf{O}} = \begin{bmatrix} \mathbf{B}_{1}^{\mathbf{O}} & \mathbf{B}_{2}^{\mathbf{O}} & \mathbf{B}_{3}^{\mathbf{O}} & \mathbf{B}_{4}^{\mathbf{O}} \end{bmatrix}, \qquad \mathbf{B}_{j}^{\mathbf{O}} = \begin{bmatrix} \frac{\partial N_{j}}{\partial x} & 0 & N_{j} \\ \frac{\partial N_{j}}{\partial y} & -N_{j} & 0 \end{bmatrix}$$
(5)

Results

3. Calculation of **k**e and **m**e using shape functions **N** and strain matrix in step 2 to obtain Eqs. 5 and 6.

mass matrix

$$\mathbf{m}_{e} = \int_{A} h\rho \mathbf{N}^{T} \mathbf{N} dA, \quad \mathbf{m}_{p} = \int_{A_{p}} \mathbf{N}^{T} \mathbf{I} \mathbf{N} dA \quad (6) \qquad \mathbf{I} = \begin{bmatrix} \rho h & 0 & 0\\ 0 & \rho h^{3}/12 & 0\\ 0 & 0 & \rho h^{3}/12 \end{bmatrix}$$

stiffness matrix

$$\mathbf{k}_{e} = \int_{A} h \mathbf{B}^{\mathrm{T}} \mathbf{c} \mathbf{B} \mathrm{d} \mathbf{A}, \qquad \mathbf{k}_{p} = \int_{A_{p}} \frac{h^{3}}{12} \left[\mathbf{B}^{\mathrm{I}} \right]^{\mathrm{T}} \mathbf{c} \mathbf{B}^{\mathrm{I}} \mathrm{d} \mathbf{A} + \int_{A_{p}} \kappa h \left[\mathbf{B}^{\mathrm{O}} \right]^{\mathrm{T}} \mathbf{c}_{s} \mathbf{B}^{\mathrm{O}} \mathrm{d} \mathbf{A}$$
(7)

Background Data Fusion

2D Model Formulation

The stiffness matrix for a 2D solid, rectangular element is used to account for the membrane effects of the element, which corresponds to DOFs of *u* and *v*.

	node 1	node 2	node 3		
	\mathbf{k}_{11}^m	\mathbf{k}_{12}^m	\mathbf{k}_{13}^m	\mathbf{k}_{14}^m	node1
$\mathbf{k}_{e}^{m} =$	\mathbf{k}_{21}^m	\mathbf{k}_{22}^m	\mathbf{k}_{23}^m	\mathbf{k}_{24}^m	node2
\mathbf{k}_e –	\mathbf{k}_{31}^m	\mathbf{k}_{32}^m	\mathbf{k}_{33}^m	\mathbf{k}_{34}^m	node 3
	\mathbf{k}_{41}^m	\mathbf{k}_{42}^m	\mathbf{k}_{43}^m	\mathbf{k}_{44}^m	node 4

	Γ	node1			node 2			node3			node4	_]	
	\mathbf{k}_{11}^m	0	0	\mathbf{k}_{12}^m	0	0	\mathbf{k}_{13}^m	0	0	\mathbf{k}_{14}^m	0	0	
	0	\mathbf{k}_{11}^{b}	0	0	\mathbf{k}_{12}^b	0	0	\mathbf{k}_{13}^b	0	0	\mathbf{k}_{14}^{b}	0	> node 1
	0	0	0	0	0	0	0	0	0	0	0	0	J
	${\bf k}_{21}^m$	0	0	\mathbf{k}_{22}^m	0	0	\mathbf{k}_{23}^m	0	0	\mathbf{k}_{24}^m	0	0	
	0	\mathbf{k}_{21}^{b}	0	0	k_{23}^{b}	0	0	\mathbf{k}_{23}^{b}	0	0	\mathbf{k}_{24}^{b}	0	hode 2
k -	0	0	0	0	0	0	0	0	0	0	0	0	J
$\mathbf{k}_e =$	k_{31}^{m}	0	0	\mathbf{k}_{32}^m	0	0	\mathbf{k}_{33}^m	0	0	\mathbf{k}_{34}^m	0	0]
	0	${\bf k}_{31}^{b}$	0	0	k_{33}^{b}	0	0	${\bf k}_{33}^{b}$	0	0	\mathbf{k}_{34}^{b}	0	node 3
	0	0	0	0	0	0	0	0	0	0	0	0]
	${\bf k}_{41}^m$	0	0	\mathbf{k}_{44}^m	0	0	\mathbf{k}_{43}^m	0	0	\mathbf{k}_{44}^m	0	0]
	0	\mathbf{k}_{41}^{b}	0	0	\mathbf{k}_{43}^{b}	0	0	\mathbf{k}_{43}^{b}	0	0	\mathbf{k}_{44}^{b}	0	node 4
	0	0	0	0	0	0	0	0	0	0	0	0	
	L												,

The stiffness matrix for a rectangular plate element is used for the bending effects, corresponding to DOFs of *w* and ϑ_x , ϑ_y .

	node 1	node 2	node 3	node 4	
1 - <i>b</i>	\mathbf{k}_{11}^b	\mathbf{k}_{12}^{b} \mathbf{k}_{22}^{b} \mathbf{k}_{32}^{b}	\mathbf{k}_{13}^b	\mathbf{k}_{14}^{b}	node1
	\mathbf{k}_{21}^b	\mathbf{k}_{22}^{b}	\mathbf{k}_{23}^b	\mathbf{k}_{24}^{b}	node 2
$\mathbf{k}_e =$	\mathbf{k}_{31}^b	${f k}_{32}^{b}$	${f k}_{33}^b$	\mathbf{k}_{34}^{b}	node 3
	\mathbf{k}_{41}^{b}	\mathbf{k}_{42}^{b}	\mathbf{k}_{43}^b	\mathbf{k}_{44}^{b}	node 4

Background Method

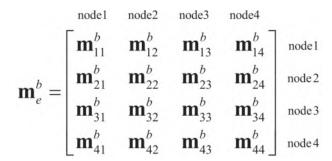
2D Model Formulation

The mass matrix for the 2D solid element is used for the membrane effects, corresponding to DOFs of *u* and *v*.

			node3		
$\mathbf{m}_{e}^{m} =$	\mathbf{m}_{11}^m	\mathbf{m}_{12}^m	\mathbf{m}_{13}^m	\mathbf{m}_{14}^m	node1
	\mathbf{m}_{21}^m	\mathbf{m}_{22}^m	\mathbf{m}_{23}^m	\mathbf{m}_{24}^m	node 2
m _e –	\mathbf{m}_{31}^m	\mathbf{m}_{32}^m	\mathbf{m}_{33}^m	\mathbf{m}_{34}^m	node3
	\mathbf{m}_{41}^m	\mathbf{m}_{42}^m	\mathbf{m}_{43}^m	\mathbf{m}_{44}^m	node4

		node1	_		node2	_		node 3	_		node4	_)
	\mathbf{m}_{11}^m	0	0	\mathbf{m}_{12}^m	0	0	\mathbf{m}_{13}^m	0	0	\mathbf{m}_{14}^m	0	0	
	0	\mathbf{m}_{11}^b	0	0	\mathbf{m}_{12}^{b}	0	0	\mathbf{m}_{13}^b	0	0	\mathbf{m}_{14}^{b}	0	node
	0	0	0	0	0	0	0	0	0	0	0	0)
	m_{21}^{m}	0	0	\mathbf{m}_{22}^m	0	0	\mathbf{m}_{23}^m	0	0	\mathbf{m}_{24}^m	0	0	
	0	\mathbf{m}_{21}^b	0	0	\mathbf{m}_{23}^b	0	0	\mathbf{m}_{23}^b	0	0	\mathbf{m}_{24}^{b}	0	> node 2
k –	0	0	0	0	0	0	0	0	0	0	0	0	J
$\mathbf{k}_e =$	m_{31}^{m}	0	0	\mathbf{m}_{32}^m	0	0	\mathbf{m}_{33}^m	0	0	\mathbf{m}_{34}^m	0	0	
	0	\mathbf{m}_{31}^b	0	0	m_{33}^{b}	0	0	m_{33}^{b}	0	0	\mathbf{m}_{34}^b	0	node
	0	0	0	0	0	0	0	0	0	0	0	0]
	\mathbf{m}_{41}^m	0	0	\mathbf{m}_{44}^m	0	0	\mathbf{m}_{43}^m	0	0	\mathbf{m}_{44}^m	0	0)
	0	\mathbf{m}_{41}^b	0	0	\mathbf{m}_{43}^b	0	0	\mathbf{m}_{43}^b	0	0	\mathbf{m}_{44}^b	0	> node 4
	0	0	0	0	0	0	0	0	0	0	0	0	

The mass matrix for a rectangular plate element is used for the bending effects, corresponding to DOFs of *w* and ϑ_x , ϑ_y .



Results

cosines

Elements in the global coordinate system

$$\mathbf{K}_{e} = \mathbf{T}^{T} \mathbf{k}_{e} \mathbf{T}$$

$$\mathbf{M}_{e} = \mathbf{T}^{T} \mathbf{m}_{e} \mathbf{T}$$

$$\mathbf{T} = \begin{bmatrix} \mathbf{T}_{3} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{T}_{3} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{T}_{3} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{T}_{3} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{T}_{3} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{T}_{3} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{T}_{3} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{T}_{3} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{T}_{3} \end{bmatrix}_{24 \times 24}$$

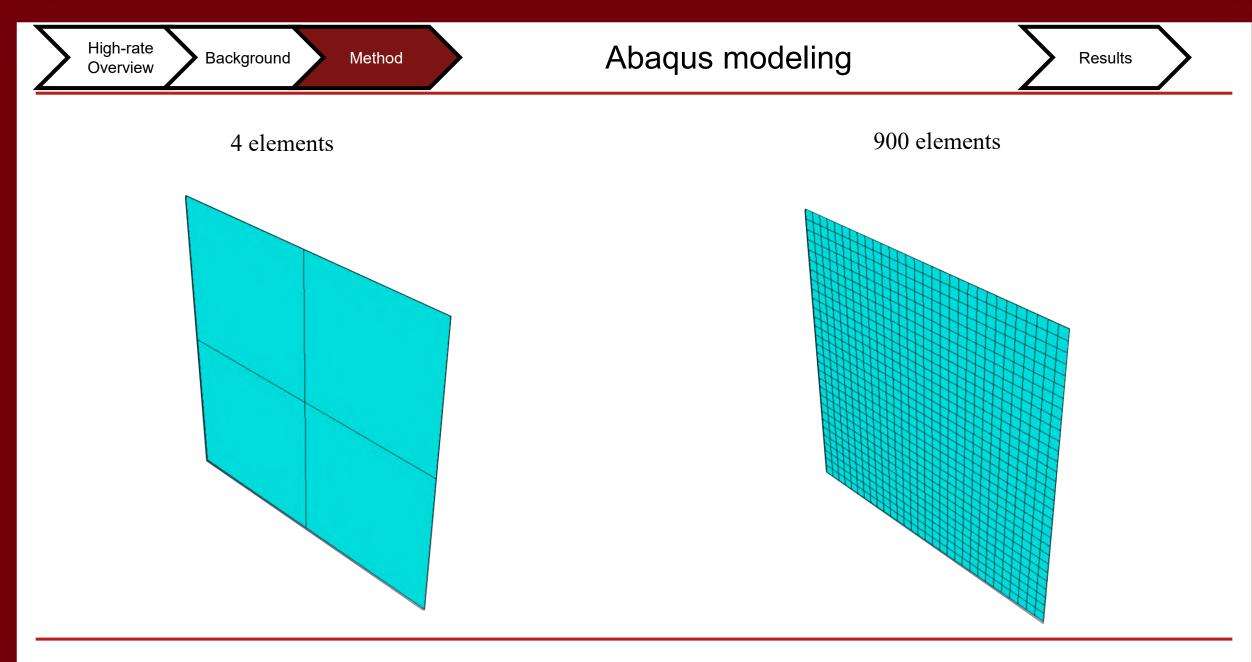
$$\mathbf{T}_{3} = \begin{bmatrix} l_{x} & m_{x} & n_{x} \\ l_{y} & m_{y} & n_{y} \\ l_{z} & m_{z} & n_{z} \end{bmatrix}_{3 \times 3}$$

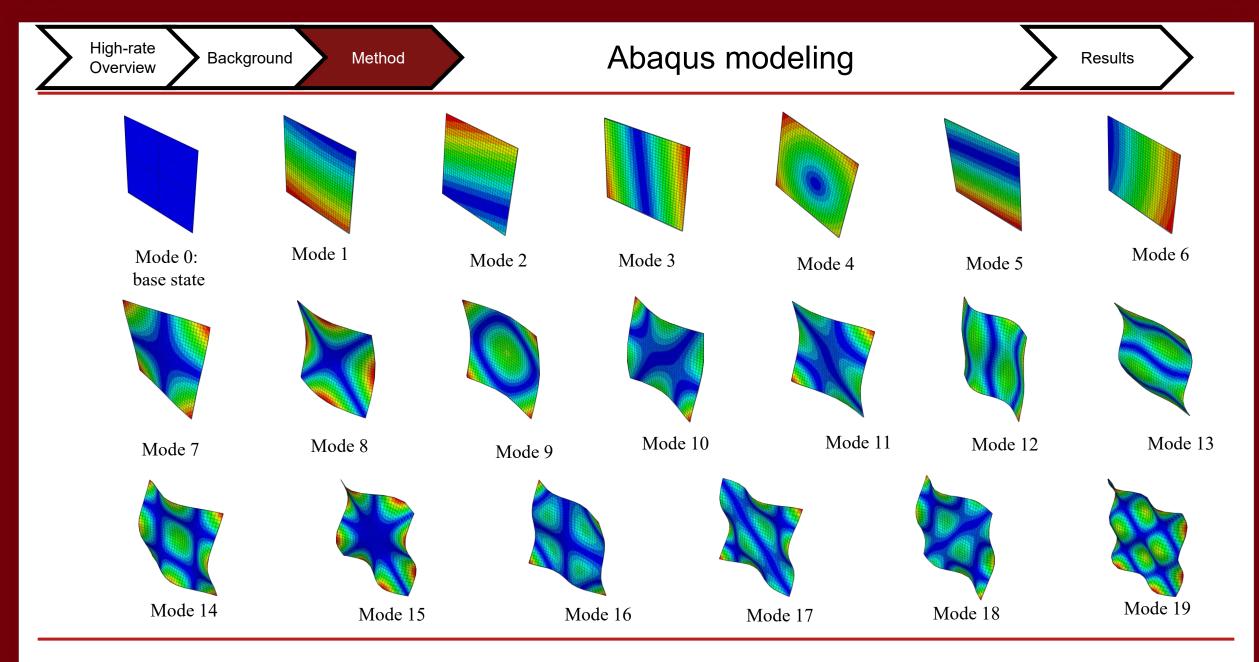
$$\mathbf{W}_{ere} \ l_{k}, \ m_{k} \ and \ n_{k} \\ (k=x, \ y, \ z) \ are \ direction$$

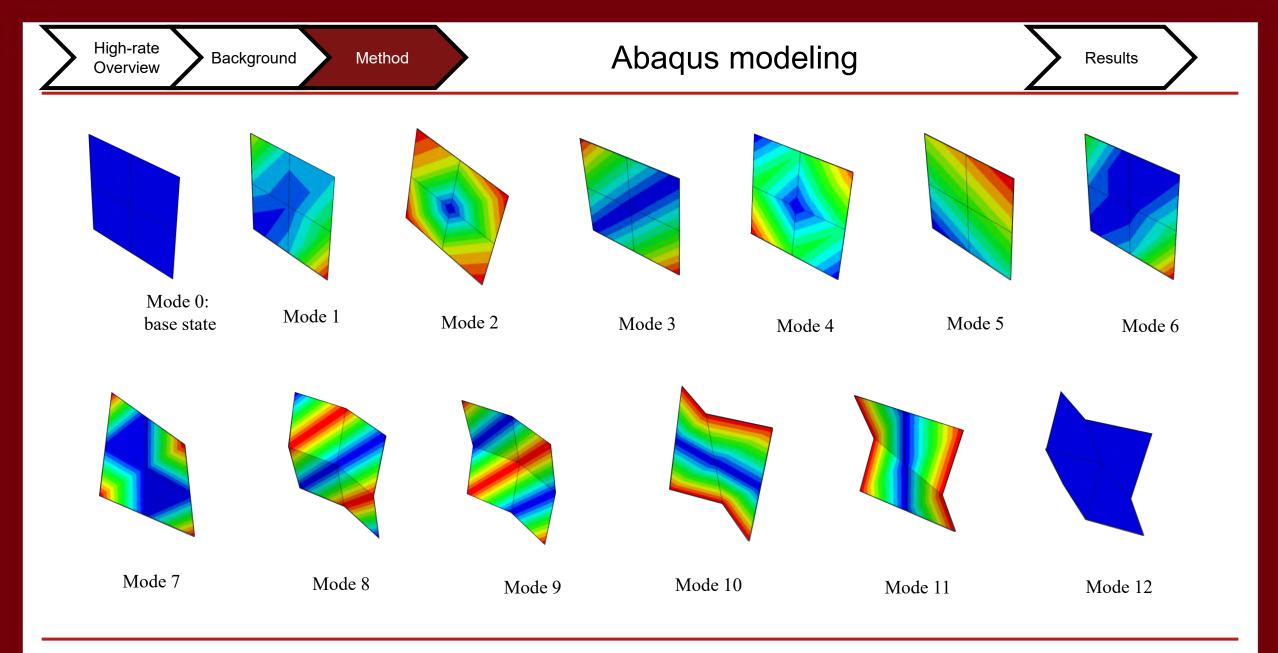
T is the transformation matrix

26

Туре	Poisson's ration	Young's modulus	density	length	width	thickness
Steel	0.3	200e9	7700 kg/m3	0.3 m	0.3 m	0.006 m







Mode Frequency

Step Na	me	Description		
Step-1				
		4 elements		
rame				
Index	Descrip	tion		
0	Increme	ent 0: Base State		
1	Mode	1: Value = -3.19909E-07 Freq =	0.0000	(cycles/time)
2	Mode	2: Value = -2.69152E-07 Freq =	0.0000	(cycles/time)
3	Mode	3: Value = -1.24332E-07 Freq =		(cycles/time)
4	Mode	4: Value = -8.33534E-08 Freq =	0 .0000	(cycles/time)
5	Mode	5: Value = -4.33065E-08 Freq =	0.0000	(cycles/time)
6	Mode	6: Value = -3.72529E-09 Freq =	0 .0000	(cycles/time)
7	Mode	7: Value = 2.12713E+06 Freq =	2 <mark>32.12</mark>	(cycles/time)
8	Mode	8: Value = 5.66377E+06 Freq =	3 <mark>78.77</mark>	(cycles/time)
9	Mode	9: Value = 1.05068E+07 Freq =	5 <mark>15.89</mark>	(cycles/time)
10	Mode	10: Value = 1.41477E+07 Freq =	598.64	(cycles/time)
11	Mode	11: Value = 1.41477E+07 Freq =	598.64	(cycles/time)
12	Mode	12: Value = 3.52346E+07 Freq =	944.72	(cycles/time)

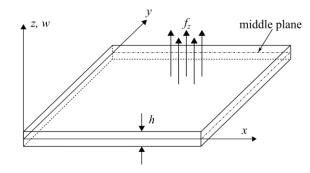
🔷 Step/Frame		×
Step Name	Description	
Step-1		
	900 elements	

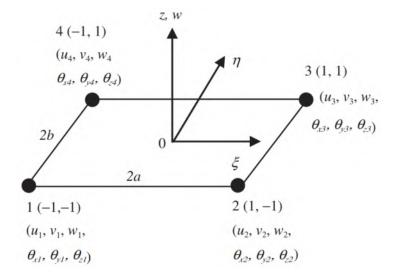
Frame

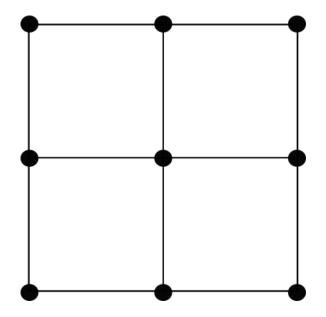
Index	Descripti	on		
0	Incremen			
1	Mode	1: Value = 2.11708E-06 Freq =	2.31573E-	-04 (cycles/time)
2	Mode	2: Value = 3.40977E-06 Freq =	2.93888E	-04 (cycles/time)
3	Mode	3: Value = 5.05996E-06 Freq =	3.58009E-	-04 (cycles/time)
4	Mode	4: Value = 6.18608E-06 Freq =	3.95847E	- <mark>04</mark> (cycles/time)
5	Mode	5: Value = 7.60294E-06 Freq =	4.38845E	- <mark>04</mark> (cycles/time)
6	Mode	6: Value = 1.44800E-05 Freq =	6.05625E	-04 (cycles/time)
7	Mode	7: Value = 1.89263E+06 Freq =	218.95	(cycles/time)
8	Mode	8: Value = 4.05830E+06 Freq =	320.62	(cycles/time)
9	Mode	9: Value = 6.23002E+06 Freq =	397.25	(cycles/time)
10	Mode	10: Value = 1.26330E+07 Freq =	565.68	(cycles/time)
11	Mode	11: Value = 1.26330E+07 Freq =	565.68	(cycles/time)
12	Mode	12: Value = 3.95886E+07 Freq =	1001.4	(cycles/time)
13	Mode	13: Value = 3.95886E+07 Freq =	1001.4	(cycles/time)
14	Mode	14: Value = 4.20637E+07 Freq =	1032.2	(cycles/time)
15	Mode	15: Value = 5.01417E+07 Freq =	1127.0	(cycles/time)
16	Mode	16: Value = 6.26389E+07 Freq =	1259.6	(cycles/time)
17	Mode	17: Value = 1.15204E+08 Freq =	1708.3	(cycles/time)
18	Mode	18: Value = 1.15204E+08 Freq =	1708.3	(cycles/time)
19	Mode	19: Value = 1.46137E+08 Freq =	1924.0	(cycles/time)

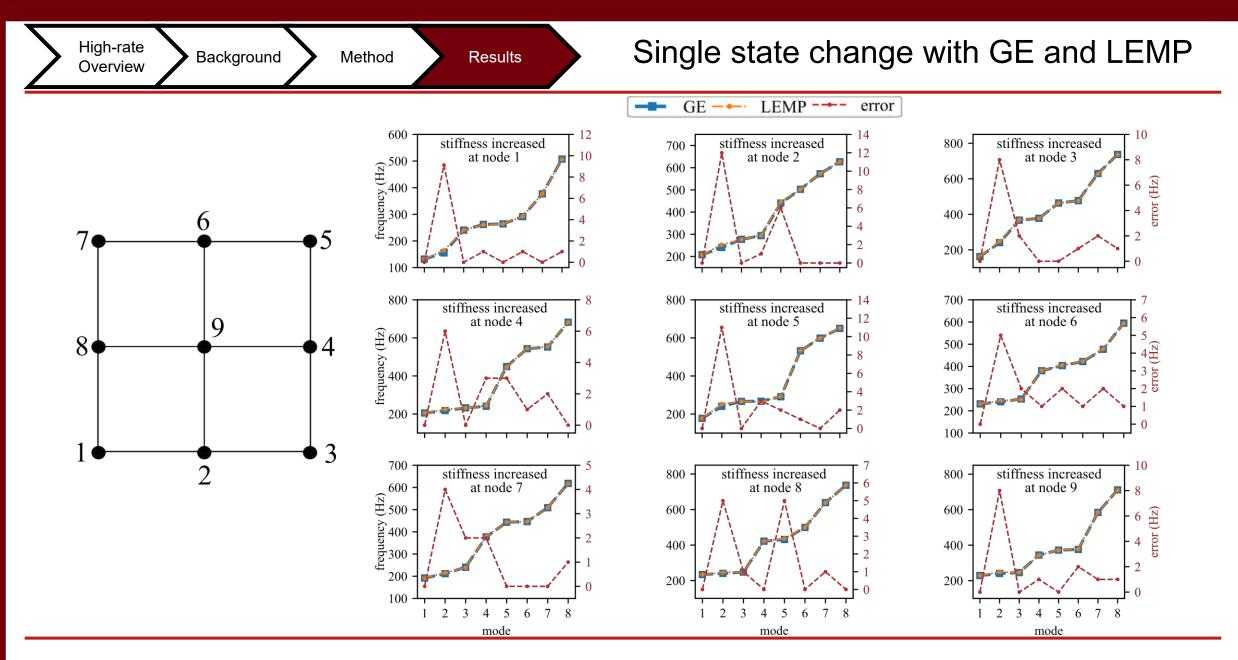
Mode	Abaqus	Generalized Eigenvalue	Error (abs)
7	232.12	232.027	0.0093
8	378.77	379.044	0.274
9	515.89	515.983	0.0093
10	598.64	598.768	0.128
11	598.64	598.768	0.128
12	944.72	945.03	0.31

Single state change with GE and LEMP

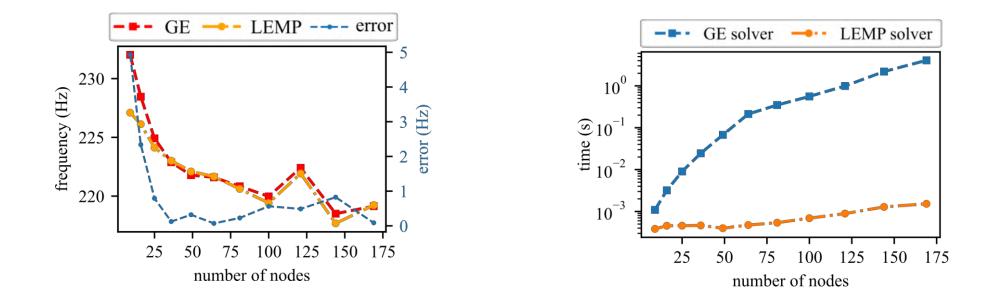








Model update time



Estimation Timing for GE and LEMP

sin	single change calculated using:			· ·	ralized nvalue]		
no. of nodes	no. of element	DOF	matrix size	freq (Hz)	time GE (s)	freq (Hz)	time LEMP (s)	error (Hz)
9	4	54	54 x 54	232.027	0.001093	227.099	0.000384	4.928
16	9	96	96 x 96	228.458	0.00320	226.120	0.000456	2.338
25	16	150	150 x 150	224.914	0.009031	224.123	0.000458	0.791
36	25	216	216 x 216	222.886	0.024529	223.01	0.000464	-0.124
49	36	294	294 x 294	221.78	0.067579	222.1	0.000399	-0.32
64	49	384	384 x 384	221.599	0.212773	221.67	0.000475	-0.071
81	64	486	486 x 486	220.837	0.348656	220.610	0.000539	0.227
100	81	600	600 x 600	219.975	0.559744	219.41	0.000691	0.565
121	100	726	726 x 726	222.409	0.994675	221.919	0.000890	0.488
144	121	864	864 x 864	218.505	2.197694	217.68	0.001285	0.825
169	144	1014	1014 x 1014	219.147	4.075451	219.234	0.001523	-0.087

Conclusion

- The LEMP algorithm can be useful for faster solving of system equation for 2D structures.
- ☐ LEMP accuracy compared to the Generalized Eigenvalue process is good.
- Alternative 2D model construction should be used before employing LEMP algorithm to solve the system equation.

Acknowledgement

This material is based upon work supported by the Air Force Office of Scientific Research (AFOSR) through award no. FA9550-21-1-0083. This work is also partly supported by the National Science Foundation Grant numbers 1850012 and 1956071. The support of these agencies is gratefully acknowledged. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors, and they do not necessarily reflect the views of the National Science Foundation or the United States Air Force.

THANKS!

Name: Emmanuel Ogunniyi Title: Graduate Research Assistant Email: ogunniyi@email.sc.edu Social

