

High-Rate Dynamic Data Augmentation and Damage Classification

Zhu Mao, Associate Professor

Department of Mechanical and Materials Engineering Worcester Polytechnic Institute

Experimental Setup of High-Rate Dynamic Test

Data courtesy of Dr. Jacob Dodson at AFRL/Eglin

Data Acquisition

- Dataset collected at 1MHz and 5.5ms
- 5 sensors used for each tests
- Reliability of the capacitor is lost after 6th experiment
 - Dataset is divided into Healthy and 5 levels of damage

Overview of the Proposed Methodology

Data Augmentation via FEM-Enhanced cGAN

Convolutional Variational Autoencoder (CVAE)

- Deep learning technique for nonlinear dimension reduction
- Encoder uses a neural network to obtain the compressed data \mathcal{Z} in a latent space
- Decoder uses dataset Z to recreate the original dataset
- Loss function based on signal reconstruction and normal distribution of the data

$$- l_R = \frac{1}{2} \sum_{j=1}^{M} \left[1 + \log(\sigma_j)^2 - \mu_j^2 - \sigma_j^2 \right]$$
$$- l_L = \sum_{j=1}^{M} (x_j - \hat{x}_j)^2$$

Conditional Generative Adversarial Network

- cGAN: a neural network designed for synthetic data generation
- Two components
 - Generator: generates the synthetic data
 - Discriminator: Try to predict if the data given is real or fake
- Uses random noise as input

FEM-Enhanced cGAN

- FEM response as seed instead of driving with random noise
 - Expected a faster converging in the training set
- Encoded dataset is used since it has smaller dimension
- Loss function defined as:
 - $L = -w_n [y_n \cdot \log x_n + (1 y_n) \cdot \log(x_n 1)]$

Worcester Polytechnic Institute

FEMenhanced

cGAN

CVAE

Classification

Classification – Support Vector Machine (SVM)

- Linear classifier
 - Supervised learning technique
 - Good performance for high dimensional data
- Kernel function for classification
 - $-K(X_1, X_2) = \langle X_1, X_2 \rangle$
 - $-K(X_1, X_2) = e^{-\gamma ||X_1 X_2||^2}$
- Minimizes the error for the function

$$- t(w,\xi) = \frac{1}{2} \|w\|^2 + \frac{c}{m} \sum_{i=1}^{m} \xi_i$$

Classification – K-Nearest Neighbors (KNN)

- Machine learning classifier
 - Supervised learning technique
 - Good performance for small datasets
- Classification based on distance of points
 - Order the points from the nearest
 - $\|X_1 x\| \le \dots \le \|X_n x\|$
 - Classify the new point based on the K nearest classes

Signal Pre-Processing

- Moving window with overlaps
 - Extract original vector into a big dataset
- Frequency and temporal information
 - Spectrograms
 - Wavelet transform
 - Data is transferred to a 2D representation

Dimension Reduction via CVAE

- Spectrogram is input into encoder
 - 3 latent dimensions
 - Small number of features for classification
 - Dimensionality

FEM-Enhanced cGAN Results

Modification of loss function to avoid mode collapsing

$$-L = -w_n [y_n \cdot \log x_n + (1 - y_n) \cdot \log(x_n - 1)] + \frac{\sigma_n^2}{\sigma_n^2 + (x_n - \mu_n)^2}$$

Augmented dataset has similar distribution to the original dataset
It occurs in all dimensions and with all classes

Damage Classification – Initial Results

- Accuracy used as metric for evaluation
 - Accuracy = $\frac{TP+TN}{TN+TN+FP+FN}$
- Statistical run with different shuffling was applied
- Original dataset classification tends to predict all points in one set

Damage Classification – Initial Results

• How the augmentation influence the accuracy?

Hyperparameter Tunning for SVM

- High regularization parameter C and kernel coefficient γ had a better performance
 - $K(X_1, X_2) = e^{-\gamma \|X_1 X_2\|^2}$ $t(w, \xi) = \frac{1}{2} \|w\|^2 + \frac{c}{m} \sum_{i=1}^m \xi_i$

Damage Classification – KNN

- Among different classifiers KNN had the best accuracy after augmenting the dataset
- Hyperparameter tunning showed best results using 3 and 5 neighbors
- Higher accuracy with small augmentation

Comparison of Different Approaches

Confusion Matrix, Original dataset, Validation								
0	- 0	17	0	0	0	0	- 16	
·	- 0	16	0	0	0	0	- 14 - 12	
class 2	- 0	11	2	1	3	0	- 10	
) an I	- 0	14	0	0	3	0	-8 -6	
4	- 0	13	0	1	3	0	- 4	
· ۲	- 0	12	0	0	1	3	- 2	
0 1 2 3 4 5 Predicted Class								

- Increase of around 30% in the accuracy compared to doing nothing
- KNN has a better performance when increasing only 2.5 times the original set
- SVM has higher accuracy as more data is added
- Some techniques does not have significant changes with augmentation

Summary

- Convolutional variational autoencoder applied for feature extraction and dimension reduction
- Conditional generative adversarial networks poses a good solution for limited sets
 - Enhancing cGAN using the FEM dataset as seed poses an easier hyperparameter tunning, better synthetic dataset and faster converging
- Data-augmented will have significant influence on different machine learning algorithms
- But...

Recap of the Available Data

- Dataset collected at 1MHz and 5.5ms
- 5 sensors used for each tests
- Would be better to validate the approaches via more controllable experimentations

Data from a Simple Structure

- Place 5 accelerometers and record vibrational response
- Extract 6 mode shapes (up to 225Hz)
- FE model available and can provide data in the same locations for physics-enhanced learning
- Nonlinearities will be introduced to mimic different stages of "damages"

Response of the Plate Structure

- Fs = 500Hz
- 8192 points
- ~16s of response
- Burst random excitation

FRF and Coherence of the Plate Structure

Experimental Result Compared to FEM

FEM frequencies [Hz]	Experimental frequencies [Hz]
5.6718	5.31
33.188	-
35.425	32.71
99.525	90.94
104.67	101.44
190.57	182.19

Introducing Nonlinearities

- Bumpers with adjustable gap
- Nonlinearity sources
- Controllable number of bumpers
- Different levels of excitations

Motion Magnification on the Bumpers

FRF with Different Number of Bumpers

27

Spectrograms of the Nonlinear System

Big Picture

- A plate structure with different levels of nonlinearity to generate different levels of "damages"
- Large amount of data under well-controlled environment available
 - Number of bumpers engaged
 - Amplitude of excitations
- More rigorously validate the physics-enhanced GAN approach

Acknowledgements

Support from AFOSR: Dr. Erik Blasch

Collaborators: Dr. Jacob Dodson and other high-rate group members

Students participated: Celso do Cabo, Mark Todisco, Nicholas Valente