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Experimental Setup of High-Rate Dynamic Test

Data courtesy of Dr. Jacob Dodson at AFRL/Eglin
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Data Acquisition

• Dataset collected at 1MHz 
and 5.5ms

• 5 sensors used for each 
tests

• Reliability of the capacitor is 
lost after 6th experiment
─ Dataset is divided into Healthy 

and 5 levels of damage
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Overview of the Proposed Methodology

CVAE
• Dimension reduction and feature extraction of the data set
• Trained using the original dataset as input

• Augment original encoded dataset to improve classification accuracy
• Uses FEM encoded data as seed of the model
• Discriminator compares generated dataset with original set

• Uses encoded dataset
• Training data is a mix of FEM dataset and original dataset
• Testing data is only original dataset

FEM-
Enhanced 

cGAN

Classification
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Data Augmentation via FEM-Enhanced cGAN
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Convolutional Variational Autoencoder (CVAE)

• Deep learning technique for nonlinear 
dimension reduction

• Encoder uses a neural network to 
obtain the compressed data 𝒵𝒵 in a 
latent space

• Decoder uses dataset 𝒵𝒵 to recreate 
the original dataset

• Loss function based on signal 
reconstruction and normal distribution 
of the data

─ 𝑙𝑙𝑅𝑅 = 1
2
∑𝑗𝑗=1𝑀𝑀 1 + log 𝜎𝜎𝑗𝑗

2 − 𝜇𝜇𝑗𝑗2 − 𝜎𝜎𝑗𝑗2

─ 𝑙𝑙𝐿𝐿 = ∑𝑗𝑗=1𝑀𝑀 𝑥𝑥𝑗𝑗 − �𝑥𝑥𝑗𝑗
2
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Conditional Generative Adversarial Network

• cGAN: a neural network 
designed for synthetic data 
generation

• Two components
─Generator: generates the 

synthetic data
─Discriminator: Try to 

predict if the data given is 
real or fake

• Uses random noise as input

https://thispersondoesnotexist.com/



Worcester Polytechnic Institute

FEM-Enhanced cGAN

• FEM response as seed instead of 
driving with random noise
─ Expected a faster converging in the 

training set

• Encoded dataset is used since it 
has smaller dimension

• Loss function defined as:
─  𝐿𝐿 = −𝑤𝑤𝑛𝑛 𝑦𝑦𝑛𝑛 � log 𝑥𝑥𝑛𝑛 + 1 − 𝑦𝑦𝑛𝑛 � log 𝑥𝑥𝑛𝑛 − 1
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Classification – Support Vector Machine (SVM)

• Linear classifier
─ Supervised learning technique
─ Good performance for high 

dimensional data

• Kernel function for classification
─ 𝐾𝐾 𝑋𝑋1,𝑋𝑋2 = 𝑋𝑋1,𝑋𝑋2
─ 𝐾𝐾 𝑋𝑋1,𝑋𝑋2 = 𝑒𝑒−𝛾𝛾 𝑋𝑋1−𝑋𝑋2 2

• Minimizes the error for the 
function
─ 𝑡𝑡 𝑤𝑤, 𝜉𝜉 = 1

2
𝑤𝑤 2 + 𝐶𝐶

𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝜉𝜉𝑖𝑖

Source: https://scikit-learn.org/stable/modules/svm.html
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Classification – K-Nearest Neighbors (KNN)

• Machine learning classifier
─ Supervised learning technique
─ Good performance for small datasets

• Classification based on distance 
of points
─ Order the points from the nearest
─ 𝑋𝑋1 − 𝑥𝑥 ≤ ⋯ ≤ 𝑋𝑋𝑛𝑛 − 𝑥𝑥
─ Classify the new point based on the K 

nearest classes

CVAE
FEM-

enhanced 
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Signal Pre-Processing

Original time series Data augmentation – Overlapping

Spectrogram

• Moving window with 
overlaps
─ Extract original vector 

into a big dataset

• Frequency and 
temporal information
─ Spectrograms
─ Wavelet transform
─ Data is transferred to a 

2D representation
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Dimension Reduction via CVAE

• Spectrogram is 
input into encoder
─ 3 latent dimensions
─ Small number of 

features for 
classification

─ Dimensionality
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FEM-Enhanced cGAN Results

• Modification of loss function to avoid mode collapsing
─ 𝐿𝐿 = −𝑤𝑤𝑛𝑛 𝑦𝑦𝑛𝑛 � log 𝑥𝑥𝑛𝑛 + 1 − 𝑦𝑦𝑛𝑛 � log 𝑥𝑥𝑛𝑛 − 1 + 𝜎𝜎𝑛𝑛2

𝜎𝜎𝑛𝑛2+ 𝑥𝑥𝑛𝑛−𝜇𝜇𝑛𝑛 2

• Augmented dataset has similar distribution to the original dataset
─ It occurs in all dimensions and with all classes
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Damage Classification – Initial Results

• Accuracy used as metric for 
evaluation
─ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

• Statistical run with different 
shuffling was applied

• Original dataset classification 
tends to predict all points in one 
set
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Damage Classification – Initial Results

• How the augmentation influence 
the accuracy?
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• High regularization parameter 𝐶𝐶 and kernel 
coefficient 𝛾𝛾 had a better performance
─  𝐾𝐾 𝑋𝑋1,𝑋𝑋2 = 𝑒𝑒−𝛾𝛾 𝑋𝑋1−𝑋𝑋2 2

─ 𝑡𝑡 𝑤𝑤, 𝜉𝜉 = 1
2
𝑤𝑤 2 + 𝐶𝐶

𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝜉𝜉𝑖𝑖

Hyperparameter Tunning for SVM
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Damage Classification – KNN 

• Among different classifiers KNN had the best 
accuracy after augmenting the dataset

• Hyperparameter tunning showed best 
results using 3 and 5 neighbors

• Higher accuracy with small augmentation
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Comparison of Different Approaches

• Increase of around 30% in 
the accuracy compared to 
doing nothing

• KNN has a better 
performance when increasing 
only 2.5 times the original set

• SVM has higher accuracy as 
more data is added

• Some techniques does not 
have significant changes with 
augmentation
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Summary 

• Convolutional variational autoencoder applied for feature extraction 
and dimension reduction

• Conditional generative adversarial networks poses a good solution 
for limited sets 
─ Enhancing cGAN using the FEM dataset as seed poses an easier 

hyperparameter tunning, better synthetic dataset and faster converging 

• Data-augmented will have significant influence on different machine 
learning algorithms

• But…
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Recap of the Available Data

• Dataset collected at 1MHz and 5.5ms

• 5 sensors used for each tests

• Would be better to validate the approaches via more controllable 
experimentations 
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Data from a Simple Structure 

• Place 5 accelerometers and record vibrational 
response

• Extract 6 mode shapes (up to 225Hz)

• FE model available and can provide data in the 
same locations for physics-enhanced learning

• Nonlinearities will be introduced to mimic different 
stages of “damages”
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Response of the Plate Structure

• Fs = 500Hz
• 8192 points 
• ~16s of response
• Burst random excitation

FE Modal 
Frequencies 
[Hz]
5.6718
33.188
35.425
99.525
104.67
190.57
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FRF and Coherence of the Plate Structure
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Experimental Result Compared to FEM

FEM 
frequencies 
[Hz]

Experimental 
frequencies 
[Hz]

5.6718 5.31
33.188 -
35.425 32.71
99.525 90.94
104.67 101.44
190.57 182.19
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Introducing Nonlinearities

• Bumpers with 
adjustable gap

• Nonlinearity sources

• Controllable number of 
bumpers

• Different levels of 
excitations
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Motion Magnification on the Bumpers

3 – 15Hz bandpass
𝛼𝛼 = 20

30 – 35Hz bandpass
𝛼𝛼 = 20

175 – 185Hz bandpass
𝛼𝛼 = 100
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FRF with Different Number of Bumpers

27

• Much noisier FRF 
estimations

• Drops of coherence
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Spectrograms of the Nonlinear System

Spectrogram
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Big Picture

• A plate structure with different levels of nonlinearity to generate 
different levels of “damages”

• Large amount of data under well-controlled environment available 
─ Number of bumpers engaged
─ Amplitude of excitations

• More rigorously validate the physics-enhanced GAN approach 

LISSD
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