FINITE TIME CONTROL

HIGH-RATE CHALLENGE MONTHLY MEETING

Junsoo Lee

Assistant Professor, University of South Carolina

November 14, 2023

College of Engineering and Computing

BACKGROUND

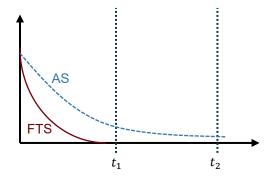
- Joined USC in Fall 2022
 - Department of Mechanical Engineering
 - Aerospace Engineering program
- Research interest
 - · Finite time stability and control
 - Autonomous multi-agent system
 - Swarm intelligence optimization methods
 - Long-term autonomous mission using UAVs
 - Satellite constellation

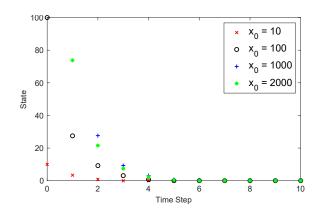
OUTLINE

- Finite time stability: Deterministic system
 - Stability notions in finite time window
 - Gap between continuous-time and discrete-time dynamical systems
 - Digital implementation of finite time control
 - Extensions to nontangency analysis
- Stochastic finite time stability
 - Stochastic convergence
 - Error bound characterization

STABILITY NOTIONS IN FINITE TIME

- Finite time stability (FTS)
 - Lyapunov stability + Finite time convergence
 - Characterization of convergence time \rightarrow upper bound
- Advantages of FTS
 - Robust against disturbances
 - Discontinuous system dynamics
 - Sequential mission
 - Faster convergence
- Fixed time stability (FxTS)
 - Finite time stable + Uniform boundedness of the convergence time





GAP BETWEEN CT & DT

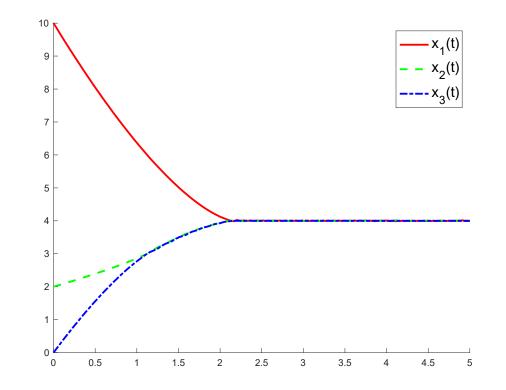
- Continuous-time (CT) system
 - Finite time convergence for higher dimension system
 - Characterization of convergence is more available
- Discrete-time (DT) system
 - Discrete-time theory requires vector-valued map
 - CT → DT requires 'smart' discretization to preserve finite time stability
 - Asymptotic stability
 - Finite time convergence
- Digital chattering

DIGITAL CHATTERING: EXAMPLE

• Three-dimensional CT system

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{bmatrix} = \begin{bmatrix} \left(x_2(t) - x_1(t) \right)^{1/3} + \left(x_3(t) - x_1(t) \right)^{1/3} \\ \left(x_1(t) - x_2(t) \right)^{1/3} + \left(x_3(t) - x_2(t) \right)^{1/3} \\ \left(x_1(t) - x_3(t) \right)^{1/3} + \left(x_2(t) - x_3(t) \right)^{1/3} \end{bmatrix}$$

- Fully-connected three agents
 - Distributed architecture

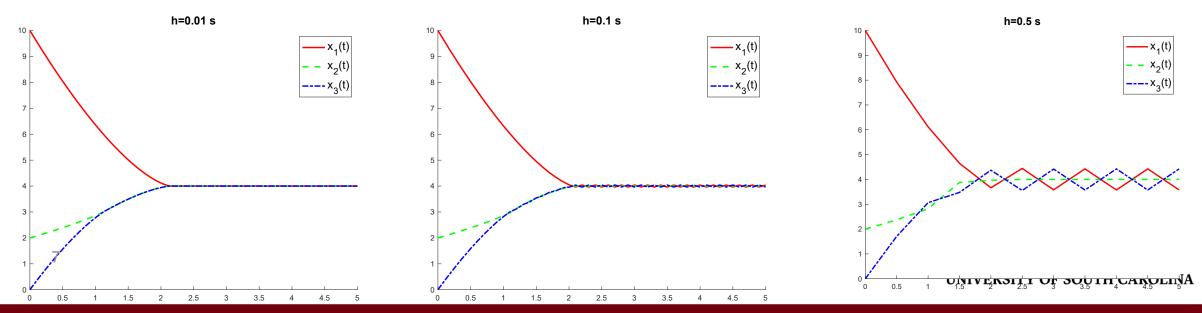


DIGITAL CHATTERING: EXAMPLE

• Explicit discretization

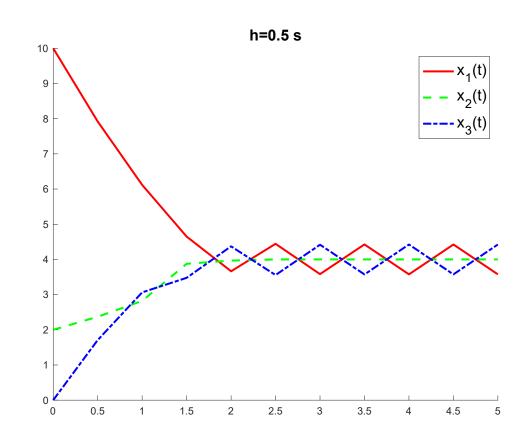
$$\Delta x(t) = \begin{bmatrix} \left(x_2(t) - x_1(t)\right)^{1/3} + \left(x_3(t) - x_1(t)\right)^{1/3} \\ \left(x_1(t) - x_2(t)\right)^{1/3} + \left(x_3(t) - x_2(t)\right)^{1/3} \\ \left(x_1(t) - x_3(t)\right)^{1/3} + \left(x_2(t) - x_3(t)\right)^{1/3} \end{bmatrix}$$

$$x(t+1) = x(t) + h\,\Delta x(t)$$



DIGITAL CHATTERING: EXAMPLE

• Lyapunov stability fails for smaller sampling rate

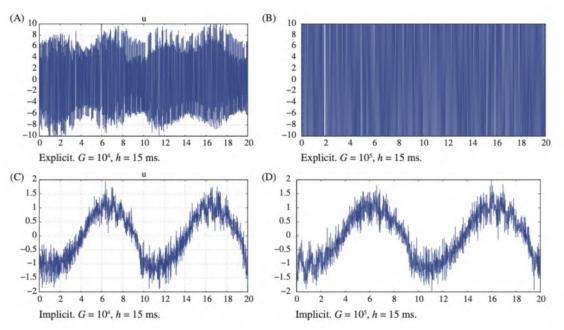


HIGH-RATE SAMPLING

- High-rate sampling
 - Higher rate sampling time guarantees small error
- Challenges
 - The relationship between sampling rate and minimum error-bound
 - Characterization of convergence to achieve error-bound finite-time convergence
 - High-rate sampling might be expensive
 - High-dimensional system

IMPLICIT DISCRETIZATION

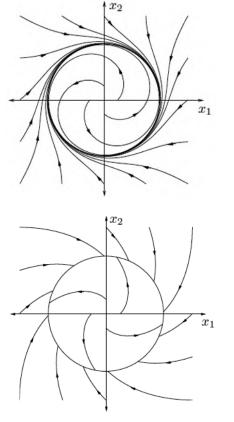
- Smart discretization method
 - Preserves stability and FT convergence
- Implicit method
 - What would be the hyper parameter?
 - How can we use system structure?
 - Distributed finite time control?
 - Connection to sliding mode controller



Credit: B. Brogliato, A. Polyakov, "Digital implementation of sliding-mode control via the implicit method: A tutorial"

NONTANGENCY OF THE VECTOR FIELD

- Vector field nontangency analysis
 - Direction cone & tangent cone
 - Limiting direction of the vector field
 - Decomposable system
- Does not require the positive definite Lyapunov function
 - Less restrictive Lyapunov function
- Convergence test and semistability analysis
 - Guarantees stability and finite time convergence

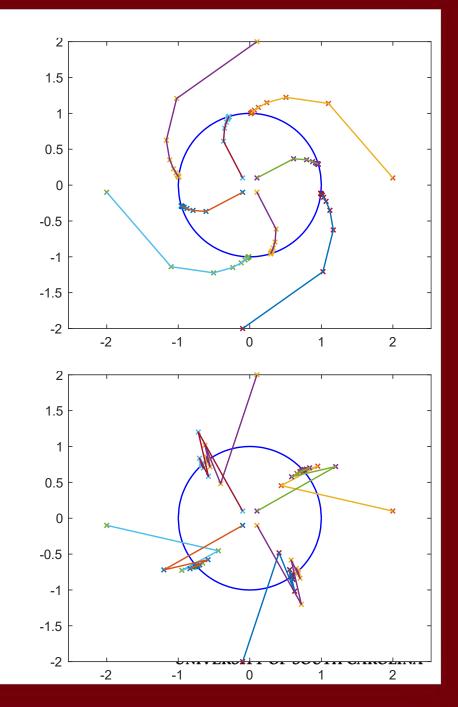


NONTANGENCY ANALYSIS: DECOMPOSABLE SYSTEM

Decomposable system

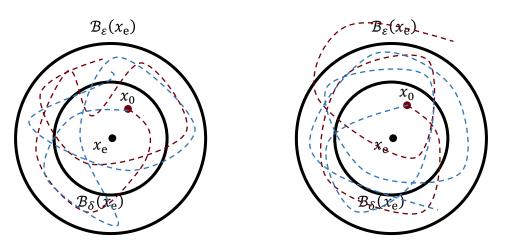
x(k+1) = f(x(k))

- Given k > 1, $f^k: \mathcal{D} \to \mathcal{D}$ denotes the *k*-fold composition of *f* with itself while Δf^k denotes the map $x \mapsto f^k(x) x$
- Given K ∈ Z₊, a K-fold decomposition for the system is a tuple D consisting of K positive integers k₁, ..., k_K and K disjoint sets D₁, ..., D_K ⊆ D \ Δf⁻¹(0) such that ∪^K_{i=1} D_i = D \ Δf⁻¹(0) and f^{k_i}(D_i) ⊆ D_i for each i = 1, ..., K.



STOCHASTIC STABILITY: DISCRETE-TIME

- DT stochastic dynamical systems \mathcal{G} $x(k+1) = f(x(k)) + D(x(k))w(k) \stackrel{\text{def}}{=} F(x(k), w(k)), \quad x(0) = x_0, \quad k \in \mathbb{Z}_+$
 - $x(k) \in \mathcal{D} \subseteq \mathbb{R}^n$: \mathcal{D} -valued stochastic process
 - w(k): d-dimensional i.i.d. stochastic process
 - $f: \mathcal{D} \to \mathcal{D}$ & $D: \mathcal{D} \to \mathbb{R}^{n \times d}$
 - Equilibrium point x_e : $f(x_e) = x_e \& D(x_e) = 0$
- Stability in probability: probability of escape
 - Lyapunov stability in probability
 - $\lim_{x_0 \to x_e} \mathbb{P}\left(\sup_{k \in \overline{\mathbb{Z}}_+} \|x(k) x_e\| > \varepsilon\right) = 0$
 - Asymptotic stability in probability
 - $\lim_{x_0 \to x_e} \mathbb{P}\left(\lim_{k \to \infty} \|x(k) x_e\| = 0\right) = 1$

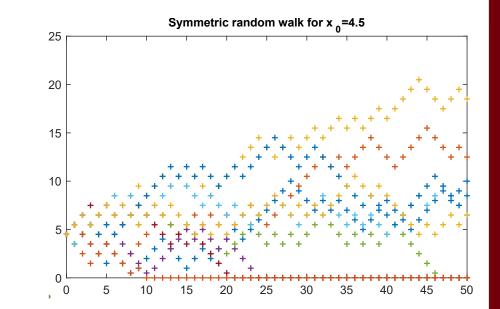


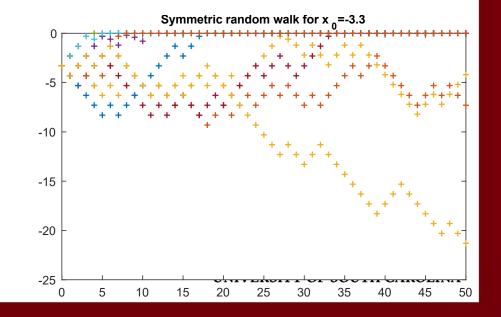
FINITE TIME STABILITY IN PROBABILITY

- Stochastic settling time $K(x, \omega)$
 - State indexed stochastic process $K: \mathcal{D} \times \Omega \to \overline{\mathbb{Z}}_+$
- Finite time stability in probability
 - Lyapunov stability in probability
 - Finiteness of the stochastic settling-time
 - The stochastic settling-time $K(x, \cdot)$ is finite almost surely
 - Finite-time convergence in probability
 - $\mathbb{P}(||s^{x_0}(K(x_0,\omega)) x_e|| = 0) = 1$

FINITENESS OF SETTLING TIME

- How do we define stochastic FT stability notion?
 - Finiteness of stochastic settling time
 - $K(x, \omega) < \infty$ almost surely
 - More general definition (E.g. symmetric random walk)
 - Hard to check
 - Finiteness of the expectation of stochastic settling time
 - $\mathbb{E}[K(x,\omega)] < \infty$
 - Narrow definition (E.g. symmetric random walk)
 - Easy to check





ERROR-BOUND FINITE TIME SEMISTABILITY

- Characterization of convergence rate
 - Upper bound for the convergence time to the given error-bound
 - Exponential (Geometric) semistability
- Complex dynamic behavior at the exact convergence
 - CT : Non-Lipschitzian dynamics
 - DT: Discontinuous state jump
- Distributed control architecture for multi-agent network system
 - Thermodynamic based consensus protocol
- Upcoming plan
 - Currently working on NSF proposal: Planned to be submitted in Spring 2023
 - Under review for IEEE L-CSS and CDC

DIGITAL IMPLEMENTATION OF FT CONTROLLER

- Bridge the gap between CT and DT FT controller design
 - CT finite time control
 - Insights from discrete time system on difference inclusion
 - Implicit discretization method
 - Selection of discretization parameters
- Application
 - High-rate sampling: impulsive dynamics, structural control
 - Low-rate sampling: spacecraft

SUMMARY

- Concept of FT stability and control
- Gap between CT and DT dynamical systems
- Digital implementation of FT controller
- Stochastic framework for FT controller
- Future application of FT controller

