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 Joined USC in Fall 2022

* Department of Mechanical Engineering
« Aerospace Engineering program

* Research interest
» Finite time stability and control
» Autonomous multi-agent system
« Swarm intelligence optimization methods
* Long-term autonomous mission using UAVs
« Satellite constellation



OUTLINE

 Finite time stability: Deterministic system
« Stability notions in finite time window
» Gap between continuous-time and discrete-time dynamical systems
 Digital implementation of finite time control
« Extensions to nontangency analysis

« Stochastic finite time stability
« Stochastic convergence
« Error bound characterization



STABILITY NOTIONS IN FINITE TIME

* Finite time stability (FTS)
* Lyapunov stability + Finite time convergence
« Characterization of convergence time - upper bound

« Advantages of FTS
* Robust against disturbances
» Discontinuous system dynamics
» Sequential mission
» Faster convergence
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GAP BETWEEN CT & DT

* Continuous-time (CT) system
 Finite time convergence for higher dimension system
« Characterization of convergence is more available

 Discrete-time (DT) system
» Discrete-time theory requires vector-valued map

« CT - DT requires ‘smart’ discretization to preserve finite time stability
« Asymptotic stability
« Finite time convergence

 Digital chattering



DIGITAL GHATTERING: EXAMPLE

» Three-dimensional CT system

w020 -1®)" + (a0 - x0)
20| = | (20 — x,0)" + (1) — %)
X3 (t)) (3, (8) — s (t))1/3 + (xy(6) = 23(0))

» Fully-connected three agents
« Distributed architecture
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DIGITAL GHATTERING: EXAMPLE

« Explicit discretization

(2, () — 2,()° + (x3() — 1. ()]
Ax () = | (x,.(8) — 22(0) " + (x3(6) — 2,
(6:(8) = 25(0)"° + (20 — x3(®)
x(t+1) =x(t) + h Ax(t)
- —x, B —x,(t) o — (0
X, (1) X, (1) X, (1)
—-=-X,(t) ==X, (t) —-=-X4(t)




DIGITAL GHATTERING: EXAMPLE

« Lyapunov stability fails for smaller sampling rate

h=0.5s




HIGH-RATE SAMPLING

» High-rate sampling
« Higher rate sampling time guarantees small error

» Challenges
* The relationship between sampling rate and minimum error-bound
« Characterization of convergence to achieve error-bound finite-time convergence
» High-rate sampling might be expensive
« High-dimensional system



IMPLICIT DISCRETIZATION

« Smart discretization method
» Preserves stability and FT convergence

 Implicit method

* What would be the hyper parameter?
 How can we use system structure?
 Distributed finite time control?

« Connection to sliding mode controller

Credit: B. Brogliato, A. Polyakov, “Digital implementation of sliding-mode control
via the implicit method: A tutorial”



NONTANGENGY OF THE VECTOR FIELD

» Vector field nontangency analysis
» Direction cone & tangent cone
 Limiting direction of the vector field
« Decomposable system

» Does not require the positive definite Lyapunov function

* Less restrictive Lyapunov function -—-\

« Convergence test and semistability analysis
« Guarantees stability and finite time convergence /




NONTANGENGY ANALYSIS:
DECOMPOSABLE SYSTEM N

« Decomposable system

x(k +1) = f(x(k)) At

- Givenk > 1, f*: D - D denotes the k-fold composition of f 2
with itself while Af* denotes the map x » f*(x) — x

« Given K € Z,, a K-fold decomposition for the system is a
tuple D consisting of K positive integers k;, ..., kx and K 15F
disjoint sets D, ..., Dk € D \ Af~1(0) such that ur, D; =D\ |
Af~1(0) and f*i(D;) € D, foreachi =1, ..., K.




STOCHASTIC STABILITY: DISGRETE-TIME

« DT stochastic dynamical systems G
x(k+1) = f(x(k)) + D(x(k))w(k) & F(x(k),w(k)), x(0)=x, kEeZ,

x(k) € D € R™ : D-valued stochastic process

w(k) : d-dimensional i.i.d. stochastic process

f:D->D & D:D - R™4

Equilibrium point x, : f(x.) = x. & D(x,) =0

 Stability in probability: probability of escape
« Lyapunov stability in probability
* lim P(sup lx(k) — x,.|| > e) =0

Xo=%e  \kez,
« Asymptotic stability in probability
¢ lim P(gg&ux(k) — x| =0) =1

xO_)xe




FINITE TIME STABILITY IN PROBABILITY

» Stochastic settling time K(x, w)
- State indexed stochastic process K: D x Q — Z,

 Finite time stability in probability
* Lyapunov stability in probability
» Finiteness of the stochastic settling-time
» The stochastic settling-time K(x, -) is finite almost surely
 Finite-time convergence in probability
¢ B([ls% (K (o)) — xef| = 0) =1

Probability of escape



FINITENESS OF SETTLING TIME

* How do we define stochastic FT stability notion?

» Finiteness of stochastic settling time
* K(x,w) < oo almost surely
« More general definition (E.g. symmetric random walk)
« Hard to check

» Finiteness of the expectation of stochastic settling time
e E[K(x,w)] < o
» Narrow definition (E.g. symmetric random walk)
« Easy to check
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Symmetric random walk for x 0=4.5
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ERROR-BOUND FINITE TIME SEMISTABILITY

Characterization of convergence rate
» Upper bound for the convergence time to the given error-bound
» Exponential (Geometric) semistability

Complex dynamic behavior at the exact convergence
« CT : Non-Lipschitzian dynamics
» DT: Discontinuous state jump

Distributed control architecture for multi-agent network system
* Thermodynamic based consensus protocol

Upcoming plan
» Currently working on NSF proposal: Planned to be submitted in Spring 2023
* Under review for IEEE L-CSS and CDC



DIGITAL IMPLEMENTATION OF FT CONTROLLER

» Bridge the gap between CT and DT FT controller design
CT finite time control

Insights from discrete time system on difference inclusion
Implicit discretization method

Selection of discretization parameters

« Application
« High-rate sampling: impulsive dynamics, structural control
» Low-rate sampling: spacecraft



SUMMARY

Concept of FT stability and control

Gap between CT and DT dynamical systems

Digital implementation of FT controller

Stochastic framework for FT controller

Future application of FT controller
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