

Data-Driven State Awareness and Health Monitoring for Next Generation Intelligent Systems

Peiyuan Zhou, Yiming Fan, Shabbir Ahmed, Ahmad Amer, Alvin Chen, Airin Dutta, Shinan Huang

Fotis Kopsaftopoulos

Associate Professor of Aerospace Engineering Director, Intelligent Structural Systems Laboratory (ISSL) Department of Mechanical, Aerospace, and Nuclear Engineering

Rensselaer Polytechnic Institute, Troy, NY

Email: <u>kopsaf@rpi.edu</u> Internet: <u>http://issl.mane.rpi.edu</u>

December 17, 2024

Intelligent Structural Systems Lab (ISSL)

- 6 PhD students
- 6 MS/MEng students
- 5 undergraduate students
- 1 visiting Professor

- Formal verification of stochastic state awareness for aerospace systems
- Probabilistic/statistical structural health monitoring (SHM) via vibration-based and acousto-ultrasound methods
- Data-driven stochastic identification and online fault diagnosis of eVTOL aircraft
- Data-driven modeling and online monitoring of metal additive manufacturing
- Integration of physics-based and data-based methods via multi-fidelity modeling

Future intelligent structural systems will be able to "feel," "think" and "react"!

Structural/systems health state (diagnosis/prognosis)

Development of novel stochastic dynamic data-driven methods that will enable next generation self-aware and self-diagnostic structural systems that can "feel," "think" and "react"

Main Research Thrusts:

- State awareness: monitor the structural state and safety-critical phenomena and events
- System diagnostics/prognostics: probabilistic health monitoring, fault detection/identification within complex dynamic environments under varying operating states
- Fly-by-feel for next generation intelligent aerial vehicles
- Formal verification of stochastic state awareness and diagnosis

Fly-by-feel Flight awareness Stochastic modeling & physics-informed statistical learning Structural awareness

... "feel," "think," and "react"

Intelligent Structural Systems Laboratory (ISSL)

... "feel," "think," and "react" 7

Prototype ISSL Demonstrators

is Laboratory (ISSL)

Test Case 1 – Structural Awareness

The Composite Wing:

- Half Span: 1.5 m, chord: 0.3 m
- Weight: ~200 g
- Construction:
 - Spar: CF-Epoxy laminate $(0_{2\times 2twill}/0_{UD})$ symmetric
 - Skin: CF-Epoxy laminate $(0_{2\times 2twill})$
 - Rib: Plywood

The Experiments

- 1. Low-frequency random vibration
- 2. Cantilever fixture

Intelligent Structural Systems Laboratory (ISSL)

Assembly

Test Case 2 – Flight Awareness

Modular Wing – Wind Tunnel Experimental Assessment

A total of 48 integrated sensors

- piezoelectric sensors
- strain gauges
- accelerometers

- Angle of attack: [0 15] degrees
- Airspeed: [8 20] m/s
- Signal length per data set: 128 s
- Freq. Bandwidth: [0.1 500] Hz
- Total number of flight states: 192

The Identification Approach

Given the sensing data (noise corrupted signals) identify the **structural dynamics** and determine the actual structural/health state.

- System Identification: build mathematical models from sensing data
- Non-parametric and parametric models
- Stochastic time series models → Discrete-time difference equations
- Estimation of dynamics under *uncertainties/noise*

Main Challenge: Dynamic/Varying States under Uncertainty

Standard Identification Approach

- One model per data set → break the problem in *unrelated sub-problems*
- **Total** number of parameters: (*number of models*) × (*number of parameters*)

The operating state vector **uniquely** defines the system state!

Intelligent Structural Systems Laboratory (ISSL)

(Kopsaftopoulos 2012; Kopsaftopoulos et al. 2016, 2018) 14

Data Functional Pooling

Intelligent Structural Systems Laboratory (ISSL)

Model parameters depend functionally on the flight state!

Functionally Pooled (FP) Global Models

pa

Vector-Dependent Functionally Pooled Time Series Model: VFP AutoRegressive Model

sensor signal from
flight state k

$$y_{k}[t] = \sum_{i=1}^{na} a_{i}(k) \cdot y_{k}[t-i] + w_{k}[t]^{\text{flight state } k}$$

$$w_{k}[t] \sim \text{iid } \mathcal{N}(0, \sigma_{w}^{2}(k)) \quad k \in \mathbb{R}^{2}, \qquad E\{w_{k_{i,j}}[t] \cdot w_{k_{m,n}}[t-\tau]\} = \gamma_{w}[k_{i,j}, k_{m,n}] \cdot \delta[\tau]$$
Model parameters: $a_{i}(k) \triangleq \sum_{j=1}^{pa} a_{i,j} G_{d_{a}(j)}(k)$
basis functions
The model parameters functionally
depend on the flight state vector k
coefficients of projection: $\theta = [a_{1,1} \ a_{1,2} \ \dots \ a_{na,pa}]^{T} \longrightarrow$ to be estimated from
the sensor signals
(do not depend on the flight state)

$$k \quad : \quad \text{flight state vector}$$

$$y_{k}[t] \quad : \quad \text{response signals obtained under each flight state}$$

$$u_{k}[t] \quad : \quad \text{inovations sequence (noise) signal}$$

$$a_{i,j} \quad : \quad AR \text{ coefficients of projection}$$

AR functional base dimensionality

Intelligent Structural Systems Laboratory (ISSL)

16

Rensselaer

Stochastic Model Identification

A Functionally Pooled (FP) linear regression framework

The VFP-ARX model may be rewritten in linear regression form:

$$y_{\boldsymbol{k}}[t] = \left[\boldsymbol{\varphi}_{AR}^{T}[t] \otimes \boldsymbol{g}_{AR}^{T}(\boldsymbol{k}) : \boldsymbol{\varphi}_{X}^{T}[t] \otimes \boldsymbol{g}_{X}^{T}(\boldsymbol{k})\right] \cdot \boldsymbol{\theta} + e_{\boldsymbol{k}}[t] = \boldsymbol{\phi}_{\boldsymbol{k}}^{T}[t] \cdot \boldsymbol{\theta} + e_{\boldsymbol{k}}[t]$$

with:

$$\begin{split} \varphi_{AR}[t] &\triangleq [-y_{k}[t-1] \dots - y_{k}[t-na]]^{T} \\ \varphi_{X}[t] &\triangleq [x_{k}[t] x_{k}[t-1] \dots x_{k}[t-nb]]^{T} \\ g_{AR}(k) &\triangleq [G_{1}(k) \dots G_{pa}(k)]_{[pa \times 1]}^{T} \\ g_{X}(k) &\triangleq [G_{1}(k) \dots G_{pb}(k)]_{[pb \times 1]}^{T} \\ \end{split}$$

$$\begin{split} \text{Coefficients of projection vector} \\ \theta &\triangleq [a_{1,1} \dots a_{na,pa} \vdots b_{0,1} \dots b_{nb,pb}]^{T} \\ \text{Having data:} \quad x_{k}[t], y_{k}[t] \quad (t = 1, \dots, N) \quad (k \rightarrow \underbrace{k_{1,1}, k_{1,2}, \dots, k_{M_{1},M_{2}}}_{\text{different operating conditions}} \\ \text{the VFP-ARX expression gives:} \\ \begin{bmatrix} y[1] \\ \vdots \\ y[N] \end{bmatrix} = \begin{bmatrix} \Phi[1] \\ \vdots \\ \Phi[N] \end{bmatrix} \cdot \theta + \begin{bmatrix} e[1] \\ \vdots \\ e[N] \end{bmatrix} \implies \underbrace{y = \Phi \cdot \theta + e}_{\text{for expression expression expression}_{\text{for expression expression}_{\text{for expression expression}_{\text{for expression}_{\text{fo$$

Ordinary Least Squares (OLS) criterion $J^{\mathsf{OLS}}(\boldsymbol{\theta}, Z^{NM_1M_2}) \stackrel{\Delta}{=} \frac{1}{N} \sum_{t=1}^{N} \boldsymbol{e}^T[t] \boldsymbol{e}[t] = \frac{1}{N} \boldsymbol{e}^T \boldsymbol{e}$ $\widehat{\boldsymbol{\theta}}^{\mathsf{OLS}} = \begin{bmatrix} \boldsymbol{\Phi}^T \boldsymbol{\Phi} \end{bmatrix}^{-1} \begin{bmatrix} \boldsymbol{\Phi}^T \boldsymbol{y} \end{bmatrix}, \quad \widehat{\boldsymbol{\Gamma}}^{\mathsf{OLS}}_{\boldsymbol{w}[t]} = \frac{1}{N} \sum_{t=1}^{N} \boldsymbol{e}[t, \widehat{\boldsymbol{\theta}}^{\mathsf{OLS}}] \boldsymbol{e}^T[t, \widehat{\boldsymbol{\theta}}^{\mathsf{OLS}}] \qquad \widehat{\boldsymbol{\Gamma}}^{\mathsf{OLS}}_{\boldsymbol{w}[t]} : \text{consistent estimator}$

Weighted Least Squares (WLS) criterion

$$J^{\mathsf{WLS}}(\boldsymbol{\theta}, Z^{NM_1M_2}) \stackrel{\Delta}{=} \frac{1}{N} \sum_{t=1}^{N} \boldsymbol{e}^T[t] \boldsymbol{\Gamma}_{\boldsymbol{w}[t]}^{-1} \boldsymbol{e}[t] = \frac{1}{N} \boldsymbol{e}^T \boldsymbol{\Gamma}_{\boldsymbol{w}}^{-1} \boldsymbol{e}$$

$$\widehat{\boldsymbol{\theta}}^{\mathsf{WLS}} = \left[\boldsymbol{\Phi}^T \boldsymbol{\Gamma}_{\boldsymbol{w}}^{-1} \boldsymbol{\Phi} \right]^{-1} \left[\boldsymbol{\Phi}^T \boldsymbol{\Gamma}_{\boldsymbol{w}}^{-1} \boldsymbol{y} \right], \quad \widehat{\boldsymbol{\Gamma}}_{\boldsymbol{w}[t]}^{\mathsf{WLS}} = \frac{1}{N} \sum_{t=1}^{N} \boldsymbol{e}[t, \widehat{\boldsymbol{\theta}}^{\mathsf{WLS}}] \boldsymbol{e}^T[t, \widehat{\boldsymbol{\theta}}^{\mathsf{WLS}}] \right] \qquad \widehat{\boldsymbol{\Gamma}}_{\boldsymbol{w}[t]}^{\mathsf{OLS}} \text{ used in } 1^{st} \text{ stage} \\ \widehat{\boldsymbol{\Gamma}}_{\boldsymbol{w}[t]}^{\mathsf{WLS}} : \text{ consistent estimator}$$

Maximum Likelihood (ML) estimation (non-linear optimization problem)

$$\widehat{\boldsymbol{\theta}}^{\mathsf{ML}} \stackrel{\Delta}{=} \arg \max_{\boldsymbol{\theta}} L(\boldsymbol{\theta}/\boldsymbol{e}) = \arg \max_{\boldsymbol{\theta}} \ln p(\boldsymbol{e}/\boldsymbol{\theta}), \ L(\cdot) \text{ the logarithm of the conditional likelihood}$$
$$\widehat{\boldsymbol{\theta}}^{\mathsf{ML}} = \arg \min_{\boldsymbol{\theta}} \ln \det\{\boldsymbol{\Lambda}(\boldsymbol{\theta})\}, \quad \boldsymbol{\Lambda}(\boldsymbol{\theta}) \stackrel{\Delta}{=} \frac{1}{N} \sum_{t=1}^{N} \boldsymbol{e}[t, \boldsymbol{\theta}] \boldsymbol{e}^{T}[t, \boldsymbol{\theta}], \quad \widehat{\boldsymbol{\Gamma}}_{\boldsymbol{w}[t]} = \frac{1}{N} \sum_{t=1}^{N} \boldsymbol{e}[t, \widehat{\boldsymbol{\theta}}^{\mathsf{ML}}] \boldsymbol{e}^{T}[t, \widehat{\boldsymbol{\theta}}^{\mathsf{ML}}]$$

t=1

Intelligent Structural Sy

Why stochastic time series models?

 \triangleright **Consistency**: Probabilistic convergence of the estimator to its "true" (ϑ°) value:

 $\widehat{\boldsymbol{\vartheta}}_N \stackrel{p}{\longrightarrow} \boldsymbol{\vartheta}^o$

\hookrightarrow A physical interpretation:

"As the number of observations increases more information of the same kind is added".

Theorem 1: Least Squares estimator consistency. Let θ_o be the true projection coefficient vector, $w_{\mathbf{k}}[t]$ a white zero mean process with $E\{w_{\mathbf{k}}^2[t]\} = \sigma_w^2(\mathbf{k})$ for every operating point, and $E\{\phi_{\mathbf{k}}[t]\phi_{\mathbf{k}}^T[t]\}$ a nonsingular matrix. Then:

$$\widehat{\boldsymbol{\vartheta}}_{N}^{\mathsf{LS}} \xrightarrow{a.s.} \boldsymbol{\vartheta}_{o} \qquad (N \longrightarrow \infty).$$

with a.s. designating almost sure (strong) convergence.

Theorem 2: Least Squares estimator consistency (projection of innovations std. dev.). Let ϑ_o be the true projection coefficients vector, $w_{\mathbf{k}}[t]$ a white zero mean process with the innovations standard deviation bounded $0 < \underline{\sigma}_w \leq \mathbf{g}_s^T(\mathbf{k})\mathbf{s} \leq \overline{\sigma}_w < \infty$ for every operating point, and $E\{\varphi_{\mathbf{k}}[t]\varphi_{\mathbf{k}}^T[t]\}$ a nonsingular matrix. Then,

 $\widehat{\boldsymbol{\vartheta}}_{N}^{\mathsf{WLS}} \xrightarrow{a.s.} \boldsymbol{\vartheta}_{o} \qquad (N \longrightarrow \infty).$

Theorem 3: Maximum Likelihood estimator consistency. Let $\bar{\boldsymbol{\theta}}_o = \left[\boldsymbol{\theta}_o^T : \gamma_w[k_{i,j}, k_{m,n}]\right]$ be the true parameter vector, $w_{\boldsymbol{k}}[t]$ a normally distributed zero mean white process with $E\{w_{\boldsymbol{k}}^2[t]\} = \sigma_w^2(\boldsymbol{k})$ for every operating point, and $E\{\boldsymbol{\phi}_{\boldsymbol{k}}[t]\boldsymbol{\phi}_{\boldsymbol{k}}^T[t]\}$ a nonsingular matrix. Then:

Intelligent Structural

$$\widehat{\overline{\boldsymbol{\theta}}}_{N}^{\mathsf{ML}} \xrightarrow{a.s.} \overline{\boldsymbol{\theta}}_{o} \qquad (N \longrightarrow \infty).$$

19

Differences and comparison with ML models?

Test Case 1 – Varying Structural States

The Composite Wing:

- Half Span: 1.5 m, chord: 0.3 m
- Weight: ~200 g
- Construction:
 - Spar: CF-Epoxy laminate $(0_{2\times 2twill}/0_{UD})$ symmetric
 - Skin: CF-Epoxy laminate $(0_{2\times 2twill})$
 - Rib: Plywood

The Experiments

- 1. Low-frequency random vibration
- 2. Cantilever fixture

Intelligent Structural Systems Laboratory (ISSL)

Assembly

Experimental Setup – Composite Wing

0

014

***13**

1000

X (mm)

sensor

Leading edge

damage

Sensor types

- Accelerometers PCB 352C23
- Glued with Loctite401
- Sensor topology
 - 3x5 grid on wing skin
 - $x_{sensor} \sim \{0, 10, 20, 30, 40\}$ in
 - $y_{sensor} \sim \{0, 4, 8\}$ in

Damage topology

- 4x7 grid of damage locations
- $x_{damage} \sim \{4, 10, 16, 22, 28, 34, 40\}$ in
- $y_{damage} \sim \{0, 2.5, 5, 7.5\}$ in
- 7 weights to simulate local damage
- $w_{damage} \sim \{0, 3, 6, 9, 12, 15, 18\} g$
- Data acquisition
 - Random excitation
 - Sampling frequency: $F_s = 512 Hz$
 - Data length: 64 s

The Main Challenges

- A. How to overcome the <u>trade-off</u> between detection sensitivity and robustness to uncertainty?
 - B. How to detect, localize and quantify damage under uncertainty?
 - Varying operational and environmental conditions → system behavior and dynamics continuously change
 - Seemingly-identical components across fleet/structure → limited applicability of deterministic techniques
 - C. How to formulate the inverse problem (state estimation)?
 - Model accuracy and predictive capability (forward problem) does not necessarily result in "effective" state estimation (inverse problem)
 - Model generalization
 - Overfitting vs statistical parsimony vs inverse problem loss function

Investigate and assess the state estimation (*inverse problem*) performance of stochastic time-series methods for SHM

Based on dynamic sensing:

- Identify accurate and robust data-driven stochastic models under dynamic operating/environmental/structural states
- Detect, localize and quantify structural damage (inverse problem)
- **Assess** model performance and generalization capability
- **Explore and assess** model regularization and Bayesian state estimation methods

Signals and Non-Parametric Analysis

Rensselaer

The Structural Damage Test Cases

- a single location
 - Functionally Pooled (FP) ARX model
 - *x*_{damage}: {4} in
 - *y*_{dama,ge}: {0} in
 - $w_{damage} \in \{0, 3, 6, 9, 12, 15, 18\} g$
 - 7 structural states

Case I: Damage magnitude estimation on **Case II:** Damage localization and magnitude estimation along wing span

- Vector-dependent Functionally Pooled (VFP) ARX model
 - $x_{dama,ge} \in \{4, 10, 16, 22, 28, 34, 40\}$ in
 - *y*_{dama.ge}: {0} in
 - $w_{damage} \in \{0, 3, 6, 9, 12, 15, 18\}$ g
 - 49 structural states

State Estimation – The Inverse Problem

Main idea: use data from available sensors to estimate indirectly the structural state

current "unknown" signals "Global" Stochastic Model **Model Estimation** $\Rightarrow y_{k}[t] + \sum_{i=1}^{n} a_{i}(k) \cdot y_{k}[t-i] = \sum_{i=0}^{n} b_{i}(k) \cdot x_{k}[t-i] + w_{k}[t]$ **Training Phase** Damage **Re-parameterized model** location Grid of structural states (unknown structural state vector) u_j $\sigma_e^2(oldsymbol{\hat{k}}^A) = rac{1}{N}\sum e_u^2[t,oldsymbol{\hat{k}}^A]$ $\hat{m{k}}^A \stackrel{\Delta}{=} rg\min_{m{k}} \sum_{l=1}^{N} e_u^2[t] \; ,$ u_2 GAs + **Inverse** estimation u_1 constrained Damage nonlinear size optimization a_2 a_i a_1 data obtained via simulations.

Nonlineasr Optimization Framework

or experiments Intelligent Structural Systems Laboratory (ISSL)

Damage State Estimation

State Estimation – Issues Revealed

Potential solution: Regularized parameter estimation

Why Regularization Works?

WLS estimation

LASSO-WLS estimation

10-1

10-2

10-3

10-4

10-5

10-6

Shaded blue: WLS model parameters along with 99% confidence intervals Shaded red: LASSO model parameters along with 99% confidence intervals

Damage size (g)

Damage Size Estimation Comparison (1)

LASSO Regularization ($\lambda = 0.008$)

VFP Model: Model Residual Comparison

State Estimation Revisited

Bayesian MCMC Damage Magnitude Estimation – No Regularization

Bayesian MCMC Damage Magnitude Estimation – LASSO Regularization

Bayesian Damage Magnitude Estimation – LASSO Regularization

Bayesian Damage State Estimation – No Regularization

Bayesian Damage Magnitude Estimation – LASSO Regularization

Test Case 2 – Varying Flight States

A total of 48 integrated sensors

- piezoelectric sensors
- strain gauges
- accelerometers

- Angle of attack: [0 15] degrees
- Airspeed: [8 20] m/s
- Signal length per data set: 128 s
- Freq. Bandwidth: [0.1 500] Hz
- Total number of flight states: 192

18

Observation: as the AoA approaches the critical stall region the **amplitude of the signals increases** Intelligent Structural Systems Laboratory (ISSL)

Intelligent Structural Systems Laboratory (ISSL)

-1.1

The Identified VFP Model

 $VFPAR(21)_{19}$ is selected as optimal model

Model parameters vs flight state

-0.55

A Integration with State Awareness

Data-driven modeling and state awareness

- Account for noise and uncertainty in data from dynamic systems in operation
- Decision made via hypothesis tests at predetermined statistical significance levels

Cramér-Rao Lower bound

• The Cramér-Rao Lower Bound (CRLB) gives a **lower estimate** for the **variance** of an **unbiased estimator**.

$$var(\theta) \ge \overline{I}$$

$$I(\theta) = n\mathbf{E}_{\theta}[(\frac{\delta \mathcal{L}(\mathbf{X};\theta)}{\delta \theta})^2]$$

CRLB formulations for FP time series models:

- 1. CRLB wrt model parameter vector
- 2. CRLB wrt state estimation vector

Some data will give better accuracy and

- The data gives **no information** about θ
- The data gives **some information** regarding which value of θ will maximize the likelihood of observing this set of data.
- This data has high information about the precise value of θ

Fisher information measures the expected amount of information given by a random variable (X) for a parameter(θ) of interest

Intelligent Structural Systems Laboratory (ISSL)

*Dutta, A., McKay, M., Kopsaftopoulos, F., and Gandhi, F., "Unified Statistical Framework for Rotor Fault Diagnosis on a Hexacopter via Functionally Pooled Stochastic Models," Vertical Flight Society 77th Annual Forum, Virtual, May 2021.

functional

$$\text{Model parameter estimator} \qquad \widehat{\boldsymbol{k}} = \arg\min_{\boldsymbol{k}\in\mathbf{R}^m}\sum_{i=1}^N e_u^T[t,\boldsymbol{k}]e_u[t,\boldsymbol{k}] \ , \quad \sigma_u^2(\widehat{\boldsymbol{k}}) = \frac{1}{N}\sum_{t=1}^N e_u[t,\widehat{\boldsymbol{k}}]e_u^T[t,\widehat{\boldsymbol{k}}]$$

$$\ln \mathcal{L}(\hat{k}, \sigma_u^2(\hat{k})) = -\frac{N}{2}ln(2\pi) - \frac{N}{2}ln(\sigma_u^2) - \frac{1}{2}\sum_{t=1}^N \frac{e_u^T(\hat{k}), t)e_u(\hat{k}), t)}{\sigma_u^2(\hat{k})}$$

CRLB formulation

$$\boldsymbol{\Sigma}_{CRLB} = \left[\mathbf{E} \Big[\Big(\frac{\delta \ln \mathcal{L}(\boldsymbol{k}, \sigma_u^2)}{\delta \boldsymbol{k}} \Big) \Big(\frac{\delta \ln \mathcal{L}(\boldsymbol{k}, \sigma_u^2)}{\delta \boldsymbol{k}} \Big)^T \Big] \right]^{-1}$$

 e_u : model residual $\sigma_u^2(\hat{k})$: model residual covariance

$$\frac{\delta \ln \mathcal{L}(\mathbf{k}, \sigma_u^2)}{\delta \mathbf{k}} = 0 + 0 - \frac{1}{2} \sum_{t=1}^{N} \frac{\delta \mathbf{e}(\mathbf{k}, t)}{\delta \mathbf{k}} \cdot 2 \cdot \mathbf{\Sigma}^{-1} \mathbf{e}^T(\mathbf{k}, t)$$

$$\boldsymbol{\Sigma}_{CRLB} = \sigma_u^2(\hat{\boldsymbol{k}}) \left[\sum_{t=1}^N \varepsilon(\boldsymbol{k}, t) \varepsilon(\boldsymbol{k}, t)^T \right]^{-1} , \ \varepsilon(\boldsymbol{k}, t) = \frac{\delta e_u^T(\boldsymbol{k}, t)}{\delta \boldsymbol{k}} = 0 \underbrace{\boldsymbol{\theta}^T}_{\boldsymbol{\theta}} \underbrace{\boldsymbol{\theta}_u[t]}_{\boldsymbol{\theta}} \otimes \underbrace{\frac{\delta \boldsymbol{G}(\boldsymbol{k})}{\delta \boldsymbol{k}}}_{\boldsymbol{\delta}}$$

Blue ellipsoids: 500 samples

Red ellipsoids: 10,000 samples

CRLB State Estimation Assessment (1) Rensselaer

CRLB State Estimation Assessment (2)

Intelligent Structural Systems Laboratory (ISSL)

Rensselaer

Sensor error: Zero padding

Sensor error: Skewed data value

$$y_{corr}(t) = y(t) + X, X \sim Normal(0, p^2 Var(y))$$

Sensor error: Additional noise

 $y_{corr}(t) = \min(y(t), p \times \max(y(t)))$

Sensor error: Data clipping

CRLB State Estimation Assessment (3)

Sensor error: Zero padding

CRLB State Estimation Assessment (4) Rensselaer

Sensor error: Skewed data

CRLB State Estimation Assessment (5) Rensselaer

Sensor error: Addition noise

CRLB State Estimation Assessment (6) Renselaer

Sensor error: Data Clipping

CRLB State Estimation Assessment (7) Rensselaer

Suboptimal model selection: reduced functional subspace (9 basis)

10% samples corrupted by zero padding at 26 s

Concluding Remarks & Next Steps

- State awareness for intelligent systems:
 - ✓ multi-modal distributed sensing
 - combination of stochastic identification and machine learning approaches
- Formal verification of **stochastic state awareness** algorithms

Current & Future Steps

- Continuous model adaptation and learning
- Stochastic properties for formal verification
- Modular verification & safety envelopes
- Evaluation & assessment
- Prototype self-aware UAV demos & flight tests

composite wings with embedded sensors

AFOSR DURIP

"Albatross" Intelligent UAV platform

