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Introduction

HALE 24/7 UAVs Airliners

Electric aircraft

Future intelligent structural systems will be able to “feel,” “think” and “react”!  

Satellites

Personal planes & flying cars

Robotics Civil infrastructure

Rotorcraft & vertical flight

Fundamental Challenge: State Awareness

improved performance, control, maintenance, and complete 

life-cycle monitoring, management and safety assurance

Wind turbines Smart cities

Drones



5Intelligent Structural Systems Laboratory (ISSL)

Intelligent Self-Aware Aerospace Systems

State awareness

• Aerodynamic and structural loads

• Aerodynamic phenomena, e.g., dynamic stall

• Aeroelastic behavior & structural dynamics 

✓ flutter, vibration modes, nat freqs, damp. ratios

• Flight state (angle of attack, attitude, velocity) 

• Structural/systems health state (diagnosis/prognosis)

State sensing & awareness

• Sense the environment

• Process the information

• Make optimal decisions

• Improve control and mitigation

sensor networks

varying operating, 

environmental & 
structural states

sensing info

State

Awareness

feathers as sensors

?
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Mission Statement

Development of novel stochastic dynamic data-driven methods that will 

enable next generation self-aware and self-diagnostic structural systems 

that can “feel,” “think” and “react”

Main Research Thrusts:

• State awareness: monitor the structural state and safety-critical phenomena and events

• System diagnostics/prognostics: probabilistic health monitoring, fault detection/identification 

    within complex dynamic environments under varying operating states 

• Fly-by-feel for next generation intelligent aerial vehicles

• Formal verification of stochastic state awareness and diagnosis

…“feel,” “think,” and “react” “feel”

sensing

“think”

interpretation
“react”

control
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Research Framework

“Think”
“F

e
e
l”

“

React ”

Integration with 

physics-based models 

for “smart data”

Complete State Awareness

Data-driven stochastic 

modeling, learning & analysis 

Smart 

Embedded 

Sensing

Integration with 

Host 

Structure/System

• Real-time structural and flight awareness

• Real-time health monitoring
• Fly-by-feel
• Optimized control 

• Life-cycle management 

…“feel,” “think,” and “react”

Data-Driven State Awareness for Fly-by-Feel Aerial Vehicles 11

(a) (b) (c)

(d) (e) ( f)

Fig. 9: Indicat ive CRLB est imat ion results based on uncorrupted data and opt i-

mal model at flight states: (a)(b) Velocity = 10 m/ s and AoA = 1 deg ,(c)(d)

Velocity = 8 m/ s and AoA = 7 deg.(c)(f) shows CRLB in ellipsoid presentat ion

(a) (b) (c)

(d) (e) ( f)

Fig. 10: Indicat ive CRLB est imat ion results based on data corrupted by 10% of

zero readings at flight states: (a)(b) Velocity = 10 m/ s and AoA = 1 deg ,(c)(d)

Velocity = 8 m/ s and AoA = 7 deg. (c)(f) shows CRLB in ellipsoid presentat ion
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Prototype ISSL Demonstrators

“Albatross”

Intelligent UAV platform

AFOSR DURIP
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The Composite Wing:
– Half Span: 1.5 m, chord: 0.3 m

– Weight: ~200 g

– Construction:

• Spar: CF-Epoxy laminate (02×2𝑡𝑤𝑖𝑙𝑙/0𝑈𝐷 ) 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐

• Skin: CF-Epoxy laminate (02×2𝑡𝑤𝑖𝑙𝑙)

• Rib: Plywood

The Experiments

1. Low-frequency random vibration

2. Cantilever fixture

Test Case 1 – Structural Awareness



10Intelligent Structural Systems Laboratory (ISSL)

Test Case 2 – Flight Awareness

• Angle of attack: [0 – 15] degrees

• Airspeed: [8 – 20] m/s 

• Signal length per data set: 128 s

• Freq. Bandwidth: [0.1 – 500] Hz

• Total number of flight states: 192

2Intelligent Structural Systems Laboratory (ISSL)

• 3D Printed Plastic:

• Leading and Trailing Edges (SLA)(Accura 25)

• Control Surface (FDM)(PLA)

• Ribs (FDM)(PLA)

• Spar:

• Tube (0.625” OD, 0.065” wall thickness) 

• Al 2024-T4

• Skin:

• 0.025” thick Al 6061-T6

Model Design
Structure

Interfaces with load cell 
in Tomas’ Wing Mount

Spar rotation 
constrained at 
rib using a pin 

Button Head Screw

Press-Fit Insert

Rib

Skin

Ribs interface with leading 
and trailing edges through 
a tongue and groove joint 

A total of 48 integrated sensors
• piezoelectric sensors 

• strain gauges

• accelerometers

RPI CeFPaC wind tunnel

Modular Wing – Wind  Tunnel Experimental Assessment
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The Identification Approach

• System Identification: build mathematical models from sensing data

• Non-parametric and parametric models

• Stochastic time series models → Discrete-time difference equations

• Estimation of dynamics under uncertainties/noise

excitation

(observable/unobservable)

Structure +
response

(observable)

noise

(unobservable)

Structure under varying 

environmental and 

operating conditions

Uncertainty: 

statistical 

techniques

Varying operating conditions: 

data pooling techniques

Given the sensing data (noise corrupted signals) identify the

 structural dynamics and determine the actual structural/health state. 

Differences and 

comparison with ML 

models?
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Data-Driven Framework
✓ State awareness

✓ Health awareness

✓ Self-diagnosis

State Awareness – Main Challenge

Health State

System faults

Structural damage

Cascading effects

Propagation

Environment

Wind/gusts

Turbulence

Temperature/humidity

Icing

Operating State

Loads/moments

Stresses/strains

Speed

Attitude

In addition to

Different missions

Operational usage

Maintenance

Costs

Main Challenge: Dynamic/Varying States under Uncertainty
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• One model per data set → break the problem in unrelated sub-problems

• Total number of parameters: (number of models) X (number of parameters) 

Standard Identification Approach

One systems generates all data! 

data correlation is ignored!

Airspeed: 10 m/s 

Identify Model 1

# parameters

Airspeed: 12 m/s 

Identify Model 2

# parameters

Airspeed: ... m/s

Identify Model N 

# parameters
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Multiple Operating States

airspeed

angle of attack
Grid of flight states

airspeed

angle of attack
Operating state 

vector:

The operating state vector uniquely defines the system state!

(Kopsaftopoulos 2012; Kopsaftopoulos et al. 2016, 2018)

Data records are 

collected from sample 

flight states

damage size

damage location/size

or
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aerodynamic forces

(excitation usually unobservable)      
+

sensor response

(observable)

noise

(unobservable)

Aeroelastic structure under 

varying flight states

Stochastic “Global” Vector-dependent 

Functionally Pooled (VFP) Model

…
Data records collected 

from sample flight states

data under 

varying flight 
states k

functional 

data pooling

Data Functional Pooling

angle of attack

airspeed

Model parameters depend functionally on the flight state!

(Kopsaftopoulos 2012; Kopsaftopoulos et al. 2016, 2017)

time series

(cross sections)
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Functionally Pooled (FP) Global Models

sensor signal from 

flight state k

flight state vector

response signals obtained under each flight state

innovations sequence (noise) signal

AR coefficients of projection

AR functional base dimensionality

noise term for 

flight state k

model parameters 

function of flight state k

basis functions

Vector-Dependent Functionally Pooled Time Series Model: VFP AutoRegressive Model

Model parameters:

Coefficients of projection:

(do not depend on the flight state)

to be estimated from 

the sensor signals

The model parameters functionally 

depend on the flight state vector    
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Stochastic Model Identification
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Model Parameter Estimation
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Why stochastic time series models? 
Differences and 

comparison with ML 

models?
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The Composite Wing:
– Half Span: 1.5 m, chord: 0.3 m

– Weight: ~200 g

– Construction:

• Spar: CF-Epoxy laminate (02×2𝑡𝑤𝑖𝑙𝑙/0𝑈𝐷 ) 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐

• Skin: CF-Epoxy laminate (02×2𝑡𝑤𝑖𝑙𝑙)

• Rib: Plywood

The Experiments

1. Low-frequency random vibration

2. Cantilever fixture

Test Case 1 – Varying Structural States
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Experimental Setup – Composite Wing

• Sensor types

• Accelerometers PCB 352C23

• Glued with Loctite401

• Sensor topology

• 3x5 grid on wing skin

• 𝑥𝑠𝑒𝑛𝑠𝑜𝑟~ 0, 10, 20, 30, 40  𝑖𝑛

• 𝑦𝑠𝑒𝑛𝑠𝑜𝑟~ 0, 4, 8  𝑖𝑛

• Damage topology
• 4x7 grid of damage locations

• 𝑥𝑑𝑎𝑚𝑎𝑔𝑒~ 4, 10, 16, 22, 28, 34, 40  𝑖𝑛

• 𝑦𝑑𝑎𝑚𝑎𝑔𝑒~ 0, 2.5, 5, 7.5  𝑖𝑛
• 7 weights to simulate local damage

• 𝑤𝑑𝑎𝑚𝑎𝑔𝑒~ 0, 3, 6, 9, 12, 15, 18  𝑔

• Data acquisition

• Random excitation 

• Sampling frequency: 𝐹𝑠 = 512 𝐻𝑧

• Data length: 64 s

Total number of structural states: 168
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The Main Challenges

A. How to overcome the trade-off between detection sensitivity and 

robustness to uncertainty?

 

B. How to detect, localize and quantify damage under uncertainty?

• Varying operational and environmental conditions → system behavior and 

dynamics continuously change

• Seemingly-identical components across fleet/structure → limited applicability 

of deterministic techniques

C. How to formulate the inverse problem (state estimation)?

• Model accuracy and predictive capability (forward problem) does not 

necessarily result in  “effective” state estimation (inverse problem)

• Model generalization

• Overfitting vs statistical parsimony vs inverse problem loss function
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Problem Statement

Investigate and assess the state estimation (inverse problem) performance 

of stochastic time-series methods for SHM

Based on dynamic sensing:

• Identify accurate and robust data-driven stochastic models under dynamic 

operating/environmental/structural states

• Detect, localize and quantify structural damage (inverse problem) 

• Assess model performance and generalization capability

• Explore and assess model regularization and Bayesian state estimation methods
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Stochastic time series and Gaussian process regression models

Statistical and Probabilistic Methods for SHM

Proper modeling of uncertainties

Type 1:
Damage Index

GPRM of 
Damage Index

Modelling uncertainty in DIs

Modelling loads 

& damage

GPRM of Non-
parametric Time 

Series Models

Type 2:

Z Statistic

Modelling damage via 

non-parametric models
Type 3:

1st TAR Model 
Parameter

GPRM of 
parametric Time 

Series Models

Modelling non-stationarity

Previous Work by ISSL
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Signals and Non-Parametric Analysis

Non-parametric FRFs

Damage of 0~18 g at location [x = 4 in, y = 0 in] 

Multiple sensor output

b) sensor #1 c) sensor #4 d) sensor #8

Damage effect MAY be observable

Coherence

Indicator of linearity
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Case I: Damage magnitude estimation on 

a single location

• Functionally Pooled (FP) ARX model

• 𝑥𝑑𝑎𝑚𝑎𝑔𝑒: 4  𝑖𝑛

• 𝑦𝑑𝑎𝑚𝑎𝑔𝑒: 0  𝑖𝑛

• 𝑤𝑑𝑎𝑚𝑎𝑔𝑒 ∈ 0, 3, 6, 9, 12, 15, 18  𝑔

• 7 structural states

Case II: Damage localization and magnitude 

estimation along wing span

• Vector-dependent Functionally Pooled (VFP) 

ARX model

• 𝑥𝑑𝑎𝑚𝑎𝑔𝑒 ∈ 4, 10, 16, 22, 28, 34, 40  𝑖𝑛

• 𝑦𝑑𝑎𝑚𝑎𝑔𝑒: 0  𝑖𝑛

• 𝑤𝑑𝑎𝑚𝑎𝑔𝑒 ∈ 0, 3, 6, 9, 12, 15, 18  𝑔

• 49 structural states

The Structural Damage Test Cases



28Intelligent Structural Systems Laboratory (ISSL)

State Estimation – The Inverse Problem

Main idea: use data from available sensors to estimate indirectly the structural state

Model Estimation

Training Phase 

current “unknown” signals

Re-parameterized model 
(unknown structural state vector) 

“Global” Stochastic Model

Nonlineasr Optimization Framework

Inverse estimation
GAs + 

constrained 
nonlinear 

optimization

data obtained via simulations, 

or experiments

Damage 
size

Damage 
location Grid of structural states
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Damage State Estimation
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State Estimation – Issues Revealed

Potential solution: Regularized parameter estimation

Weighted Least Squares (WLS) Estimator LASSO-WLS Estimator
penalty term
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Why Regularization Works? 

𝑽𝑭𝑷 − 𝑨𝑹𝑿 𝟓𝟒, 𝟓𝟒 𝟒𝟗 is selected as optimal model

(𝝀 = 𝟎)

(𝝀 = 𝟎. 𝟎𝟎𝟏)

Model parameters vs damage state5341 Coefficients of Projection

(𝝀 = 𝟎)

(𝝀 = 𝟎. 𝟎𝟎𝟏)
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Model Parameter Sparsity

WLS estimation LASSO-WLS estimation 
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Model Parameter Uncertainty

Shaded blue: WLS model parameters along with 99% confidence intervals

Shaded red: LASSO model parameters along with 99% confidence intervals

Damage size (g)

M
o

d
e

l 
p

a
ra

m
e

te
r

Experimental confidence 

WLS-based confidence
Experimental confidence 

LASSO-based confidence
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Damage Size Estimation Comparison (1)

Inverse problem loss function (RSS)

RSS function: ‘—’       99% CI: ‘---’      true damage: ‘—’         estimated damage: ‘—’

No Regularization

LASSO Regularization
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Damage Size Estimation Uncertainty

LASSO Regularization (𝝀 = 𝟎. 𝟎𝟎𝟖)

No Regularization (𝝀 = 𝟎)



36Intelligent Structural Systems Laboratory (ISSL)

VFP Model: Model Residual Comparison

LASSO Regularization
(𝝀 = 𝟎. 𝟎𝟎𝟎𝟖)

No Regularization
(𝝀 = 𝟎. 𝟎𝟎𝟎𝟒)
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Some Issues Remain

No Regularization

LASSO Regularization
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State Estimation Revisited

Model Estimation

Training Phase 

current signals from “unknown” state

“Global” Stochastic Model

data obtained via simulations, 

or experiments

Damage 
size

Damage 
location Grid of structural states

Re-parameterized model 
(unknown structural state vector) 

Bayesian Framework

MCMC sampling

structural state prior

structural state posterior

Convergence? 
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Bayesian Damage Estimation (1)

Bayesian MCMC Damage Magnitude Estimation – No Regularization

Bayesian MCMC Damage Magnitude Estimation – LASSO Regularization
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Bayesian Damage Estimation (2)

Bayesian Damage State Estimation – No Regularization

Bayesian Damage Magnitude Estimation – LASSO Regularization
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Bayesian Damage Estimation (2)

Bayesian Damage State Estimation – No Regularization

Bayesian Damage Magnitude Estimation – LASSO Regularization
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Test Case 2 – Varying Flight States

• Angle of attack: [0 – 15] degrees

• Airspeed: [8 – 20] m/s 

• Signal length per data set: 128 s

• Freq. Bandwidth: [0.1 – 500] Hz

• Total number of flight states: 192

2Intelligent Structural Systems Laboratory (ISSL)

• 3D Printed Plastic:

• Leading and Trailing Edges (SLA)(Accura 25)

• Control Surface (FDM)(PLA)

• Ribs (FDM)(PLA)

• Spar:

• Tube (0.625” OD, 0.065” wall thickness) 

• Al 2024-T4

• Skin:

• 0.025” thick Al 6061-T6

Model Design
Structure

Interfaces with load cell 
in Tomas’ Wing Mount

Spar rotation 
constrained at 
rib using a pin 

Button Head Screw

Press-Fit Insert

Rib

Skin

Ribs interface with leading 
and trailing edges through 
a tongue and groove joint 

A total of 48 integrated sensors
• piezoelectric sensors 

• strain gauges

• accelerometers

RPI CeFPaC wind tunnel
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The Signals 

Observation: as the AoA approaches the critical stall region the amplitude of the signals increases

Airflow velocity: 12 m/s

Airflow velocity: 18 m/s

Test envelope
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The Identified VFP Model

Model parameters vs flight state

𝑽𝑭𝑷𝑨𝑹 𝟐𝟏 𝟏𝟗 is selected as optimal model
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Signal & Prediction

Angle of attack = 1 deg, Airspeed = 8 m/s, cs=1 

Angle of attack = 9 deg, Airspeed = 12 m/s, cs=31 
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Integration with State Awareness

Cramér-Rao Lower bound     

• The Cramér-Rao Lower Bound (CRLB) gives a lower estimate for the 

variance of an unbiased estimator. 

θ

ℒ
(𝑋

;θ
)

• The data gives no information about θ
• The data gives some information regarding which value of θ 

will maximize the likelihood of observing this set of data. 
• This data has high information about the precise value of 𝜽

Some data will give better accuracy and 
precision for same diagnostic quantity*Data-driven modeling and state awareness

*Dutta, A., McKay, M., Kopsaftopoulos, F., and Gandhi, F., “Unified Statistical Framework for Rotor Fault Diagnosis on a Hexacopter via Functionally Pooled 
Stochastic Models,” Vertical Flight Society 77th Annual Forum, Virtual, May 2021. 

Fisher information measures the expected amount of information given by a random variable (X) for a parameter(θ) of interest

• Account for noise and uncertainty in data from dynamic systems in operation

• Decision made via hypothesis tests at predetermined statistical significance levels 

Fisher information

CRLB formulations for FP time series models:

1. CRLB wrt model parameter vector

2. CRLB wrt state estimation vector



47Intelligent Structural Systems Laboratory (ISSL)

CRLB w.r.t VFP-AR state vector (𝒌) 

Log likelihood

Model parameter estimator

CRLB formulation

: model residual

: model residual covariance

,

model structure

data

functional 

subspace
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State Estimation CRLB

Blue ellipsoids: 500 samples

Red ellipsoids: 10,000 samples
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CRLB State Estimation Assessment (1)
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CRLB State Estimation Assessment (2)

Data-Driven State Awareness for Fly-by-Feel Aerial Vehicles 11

(a) (b) (c)

(d) (e) ( f)

Fig. 9: Indicat ive CRLB est imat ion results based on uncorrupted data and opt i-

mal model at flight states: (a)(b) Velocity = 10 m/ s and AoA = 1 deg ,(c)(d)

Velocity = 8 m/ s and AoA = 7 deg.(c)(f) shows CRLB in ellipsoid presentat ion

(a) (b) (c)

(d) (e) ( f)

Fig. 10: Indicat ive CRLB est imat ion results based on data corrupted by 10% of

zero readings at flight states: (a)(b) Velocity = 10 m/ s and AoA = 1 deg ,(c)(d)

Velocity = 8 m/ s and AoA = 7 deg. (c)(f) shows CRLB in ellipsoid presentat ion
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Simulating Data Corruption

10% data is set to zero 𝑦𝑐𝑜𝑟𝑟 𝑡 = 𝑦(𝑡)(1 + 𝑠𝑖𝑔𝑛 𝑦 𝑡  × 𝑝)

𝑦𝑐𝑜𝑟𝑟 𝑡 = 𝑦 𝑡 + 𝑋, 𝑋~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑝2𝑉𝑎𝑟(𝑦))

Sensor error:

Zero padding

Sensor error:

Skewed data value

Sensor error:

Additional noise

𝑦𝑐𝑜𝑟𝑟 𝑡 = min(𝑦 𝑡 , 𝑝 × max(𝑦 𝑡 ))

Sensor error:

Data clipping
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CRLB State Estimation Assessment (3)

10% corrupted data

Data-Driven State Awareness for Fly-by-Feel Aerial Vehicles 11

(a) (b) (c)

(d) (e) ( f)

Fig. 9: Indicat ive CRLB est imat ion results based on uncorrupted data and opt i-

mal model at flight states: (a)(b) Velocity = 10 m/ s and AoA = 1 deg ,(c)(d)

Velocity = 8 m/ s and AoA = 7 deg.(c)(f) shows CRLB in ellipsoid presentat ion

(a) (b) (c)

(d) (e) ( f)

Fig. 10: Indicat ive CRLB est imat ion results based on data corrupted by 10% of

zero readings at flight states: (a)(b) Velocity = 10 m/ s and AoA = 1 deg ,(c)(d)

Velocity = 8 m/ s and AoA = 7 deg. (c)(f) shows CRLB in ellipsoid presentat ion

Sensor error: Zero padding
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CRLB State Estimation Assessment (4)

Sensor error: Skewed data
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CRLB State Estimation Assessment (5)

Sensor error: Addition noise
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CRLB State Estimation Assessment (6)

Sensor error: Data Clipping
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CRLB State Estimation Assessment (7)

Data-Driven State Awareness for Fly-by-Feel Aerial Vehicles 13

(a) (b) (c)

(d) (e) ( f)

Fig. 13: Indicat ive CRLB est imat ion results based on corrupted data with and

addit ional white noise of 10% signal standard deviat ion at flight states: (a)(b)

Velocity = 10 m/ s and AoA = 1 deg ,(c)(d) Velocity = 8 m/ s and AoA = 7 deg.

(c)(f) shows CRLB in ellipsoid presentat ion

(a) (b) (c)

(d) (e) ( f)

Fig. 14: Indicat ive CRLB est imat ion results based on sub-opt imal model est i-

mated with 9 VFP basis (p = 9) at flight states: (a)(b) Velocity = 10 m/ s and

AoA = 1 deg ,(c)(d) Velocity = 8 m/ s and AoA = 7 deg. (c)(f) shows CRLB in

ellipsoid presentat ion

Suboptimal model selection: reduced functional subspace (9 basis)
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State Estimation Runtime Monitoring

14 Zhou et al.

(a) (b)

Fig. 15: Indicat ive CRLB real-t ime monitoring results based on data corrupted

by zeros at t = 30 s at flight states: Velocity = 8 m/ s and AoA = 7 deg

10% samples corrupted by zero padding at 26 s

ok
okCRLB violated CRLB violated
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• State awareness for intelligent systems: 

✓ multi-modal distributed sensing

✓ combination of stochastic identification and machine 

learning approaches

• Formal verification of stochastic state awareness algorithms

Current & Future Steps

• Continuous model adaptation and learning

• Stochastic properties for formal verification 

• Modular verification & safety envelopes 

• Evaluation & assessment

• Prototype self-aware UAV demos & flight tests 

Concluding Remarks & Next Steps

“Albatross”

Intelligent UAV platform

composite wings with 

embedded sensors

AFOSR DURIP

composite wings with 

embedded sensors
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Thank you!
http://tbn0.google.com/images?q=tbn:ciOwT18YMkWuMM:http://www-rcf.usc.edu/~skoenig/icaps/icaps04/AFOSRSeal.jpg
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