
FCCM 2023 (Poster)
Making BRAMs Compute: Creating Scalable Computational Memory Fabric Overlays

FPL 2023 (Under Review)
FPGA Processor In Memory Architectures (PIMs): Overlay or Overhaul ?

MD Arafat Kabir

PiCaSO: A Scalable and Fast
Processor-in-Memory Overlay

Background

Processor-in-Memory (PIM) Architecture

⁃ Processing Elements (PEs) close to memory

⁃ Breaking von Neumann memory bottleneck

⁃ BRAMs distributed throughout FPGAs

⁃ Improve memory intensive application performance

⁃ Proposals modifying BRAM tile to PIM tile

⁃ CCB

⁃ CoMeFa

3

Neural Cache, ISCA 2018

Compute Capable BRAM (CCB)

⁃ Based on SRAM Neural Cache (ISCA’18)

⁃ Activate 2 wordlines at a time (requires modified voltage source)

⁃ PE is equivalent of a Full-Adder

4• Wang, Xiaowei, Vidushi Goyal, Jiecao Yu, Valeria Bertacco, Andrew Boutros, Eriko Nurvitadhi, Charles Augustine, Ravi Iyer, and Reetuparna Das. "Compute-Capable Block RAMs for

Efficient Deep Learning Acceleration on FPGAs." In 2021 IEEE 29th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 88-96. IEEE, 2021.

Compute-in-Memory Blocks for FPGAs (CoMeFa)

⁃ Improved upon CCB, using dual-port nature of BRAMs

⁃ Does not require voltage source modification, requires SA cycling (CoMeFa-A)

⁃ PE can be configured to implement any bit-wise operation (AND, OR, XOR, etc.)

5• Arora, Aman, Tanmay Anand, Aatman Borda, Rishabh Sehgal, Bagus Hanindhito, Jaydeep Kulkarni, and Lizy K. John. "CoMeFa: Compute-in-Memory Blocks for FPGAs." In 2022 IEEE 30th

Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 1-9. IEEE, 2022.

CoMeFa-D: Delay Optimized CoMeFa-A: Area Optimized

Comparison Summary: CCB vs CoMeFa

⁃ 1.25x – 2.25x slower

⁃ 8.1% – 25.4% bigger

6

PIM Overlay Motivation

⁃ Custom PIM tile not readily available

⁃ Custom PIMs significantly degrades clock frequency

⁃ Overlays are portable between devices

⁃ Overlays are easily reconfigurable

7

Questions

1. Can PIM overlays provide competitive performance?

2. If yes, what is the cost in terms of utilization?

3. Does overlays scale well at the device level?

PiCaSO Design Goals

⁃ PiCaSO aims to be a memory-centric design

⁃ System performance determined mainly by memory resources
⁃ BRAM is the bottleneck

8

Design Goals

1. Run as fast as the maximum BRAM frequency

2. Scale linearly with BRAM capacity of target device

3. Use minimum logic resources from FPGA fabric

Architecture

PiCaSO Architecture

10

PiCaSO

PIM Overlay-based Array Processor

⁃ Array Processor as DL accelerator

Operand Multiplexer (OpMux)

⁃ Converts A/B/NET to X/Y

⁃ Eliminates copy between bitlines

⁃ Overlaps data move and comp.

⁃ Employs “Folding Patterns”

11
Two possible folding patterns in OpMux

O
p
M
u
x

Data Movement Network

⁃ A binary hopping network

⁃ Specialized network node

⁃ 8-bit Configuration
⁃ Can handle 1 million PEs

⁃ 1 node per BRAM (16 PEs)
⁃ Total 2 slices per node

12

Pipeline Configurations

⁃ Three potential points for pipelining

⁃ We explored four configurations
⁃ Single Cycle: none of the stages are enabled

⁃ RF-Pipe: BRAM stage enabled

⁃ Op-Pipe: OpMux stage enabled

⁃ Full-Pipe: All stages enabled

13

Analysis

Utilization and Performance

⁃ Utilization numbers for 4x4 array of PIM (Tile) on Virtex-7 and Alveo U55 (US+)

⁃ Full-Pipe: 2.24x, 1.67x faster, 2x smaller

⁃ Single-Cycle: Similar speed, 2.6x and 2.5x smaller

⁃ RF/Op-Pipe: Better than Single-Cycle, Op-Pipe minimizes network latency

⁃ Full-Pipe meets one of the design goals

⁃ Runs as fast as the BRAM max frequency (543.77 for Virtex-7, 737 MHz for US+)

15

Scalability

⁃ Virtex-7 and US+ representatives
⁃ BRAM count: largest/smallest

⁃ LUT-to-BRAM ratio: highest/lowest

⁃ 100% BRAM on all devices

⁃ Minimal logic utilization
⁃ <40% on the smallest/lowest

⁃ <5% on the largest/highest

⁃ Reached maximum PE count
⁃ Min: 23K

⁃ Max: 86K

⁃ Met the second goal

Scales linearly with BRAM capacity

16
Smallest Highest ratio

Latency Comparison with Custom Designs

⁃ A-Mod and D-Mod are modified CoMeFa-A and D

⁃ PiCaSO is the fastest, except 16-bit CoMeFa-A

⁃ Custom designs have single cycle read-modify-write

⁃ Overlays need at least 2 cycles to read-modify then write

⁃ PiCaSO adoption improves latency by 13.4% - 19.5%

17Relative MAC latency w.r.t PiCaSO

Throughput Comparison

⁃ Computed for 16 Mult then accumulation of products

⁃ CCB/CoMeFa has 4x more PEs (1 PE per bitline)

⁃ PiCaSO achieves 75% - 80% of peak throughput of CoMeFa-A (most practical)

⁃ PiCaSO adoption improves throughput by 5% - 18%

18
Peak MAC throughput on Alveo U55

Memory Efficiency Comparison

⁃ Memory utilization efficiency: Memory available for weights / Total Memory

⁃ All require scratchpad memory:
⁃ CCB: 8N, CoMeFa: 5N, PiCaSO: 4N

⁃ At 16-bit precision: CCB: 50%, CoMeFa: 68.8%, PiCaSO: 93.8%

⁃ PiCaSO adoption improves memory utilization efficiency by 6.2%
⁃ 1.6 million more weights at 4-bit precision on a 100 Mb devices

⁃ Widest mode is not good for memory efficiency

19BRAM memory utilization efficiency on Virtex devices

Comparison Summary

PiCaSO

⁃ is an overlay, readily available

⁃ 0% clock overhead

⁃ less parallel MAC units

⁃ 2x slower mult

⁃ 2x faster accumulation

⁃ supports Booth’s

⁃ has high memory efficiency

⁃ 0 design complexity

⁃ Practicality: Very High

20

Conclusions

⁃ PIM Overlay fabric is readily available on off-the-shelf devices

⁃ PiCaSO achieved memory-centric design goals

⁃ PIM block as fast as BRAM max speed and as many as the BRAM

⁃ Provides 2x speed and 2x utilization improvement over benchmark design

⁃ Highly scalable on Virtex-7 and US+ devices

⁃ PiCaSO features can improve CCB and CoMeFa performance

⁃ Overlays can be good enough/better for low latency and high mem. efficiency

21

Questions?

	Slide 1: FCCM 2023 (Poster) Making BRAMs Compute: Creating Scalable Computational Memory Fabric Overlays FPL 2023 (Under Review) FPGA Processor In Memory Architectures (PIMs): Overlay or Overhaul ?
	Slide 2: Background
	Slide 3: Processor-in-Memory (PIM) Architecture
	Slide 4: Compute Capable BRAM (CCB)
	Slide 5: Compute-in-Memory Blocks for FPGAs (CoMeFa)
	Slide 6: Comparison Summary: CCB vs CoMeFa
	Slide 7: PIM Overlay Motivation
	Slide 8: PiCaSO Design Goals
	Slide 9: Architecture
	Slide 10: PiCaSO Architecture
	Slide 11: Operand Multiplexer (OpMux)
	Slide 12: Data Movement Network
	Slide 13: Pipeline Configurations
	Slide 14: Analysis
	Slide 15: Utilization and Performance
	Slide 16: Scalability
	Slide 17: Latency Comparison with Custom Designs
	Slide 18: Throughput Comparison
	Slide 19: Memory Efficiency Comparison
	Slide 20: Comparison Summary
	Slide 21: Conclusions
	Slide 22: Questions?

