

Learning Power Grid Outages with Higher-Order Topological Neural Networks

Presented By: Roshni Anna Jacob (UTD)

Collaborators:

Yuzhou Chen (Temple University)

Steve Paul, Souma Chowdhury (University at Buffalo)

Uddin Md. Joshem, Damilola Olojede, Baris Coskunuzer, Yulia R. Gel, and Jie Zhang (UTD)

Contents

Introduction

Motivation

The increasing frequency of extreme weather-related outages and cyber attack threats in the power grid.

90% of power disruptions are attributed to failure in distribution network.

U.S. 2021 Billion-Dollar Weather and Climate Disasters

https://www.clp.com.hk/en/help-support/power-outages-voltage-dips/understanding-outages-voltage-dips

Introduction

Goal

Improve the resilience of power distribution network using tools that are adaptable, online, and time sensitive.

Prepare

Adapt

Research Background

Persistent Homology

Chazal, Frédéric, and Bertrand Michel. "An introduction to topological data analysis: fundamental and practical aspects for data scientists." Frontiers in artificial intelligence 4 (2021): 108.

Research Background

Filtration on graphs and simplices

node-based filter function f

 \subseteq \subset \subset $= f(v_i)$ Graph G

Illustration of 0-d persistent homology on a toy graph G using a

Hofer, Christoph, et al. "Graph filtration learning." International Conference on Machine Learning. PMLR, 2020.

0-, 1-, 2-, and 3- simplex from left to right.

Example of generating simplicial complexes from a distribution network (DN) where each node represents a bus.

 $B_1 =$

Research Background

Key take aways:

1

Track the evolution of various patterns in the DN that (dis)appear as we change the (dis)similarity threshold and record the birth and death information of each topological feature. Those with longer lifespan are called persistent (or topological signals) and contain information about key mechanisms behind DN functionality.

2

etc.

Summarize all extracted topological features as persistence diagram (PD), persistence landscape (PL), persistent image (PI),

Also...

Hodge Laplacian analytics can be used to extend the convolutional operation within graph neural networks (GNNs) to account for complex interactions among multi-node substructures. It generalizes the node-to-node diffusion to diffusion over high order substructures.

Methodology: Higher-Order Topological Neural Networks

Fig. 1: Framework of our HOT-Nets model for graph classification. *Top row*: The higher-order simplices convolution (HoSC) module is used to extract higherorder simplices embeddings and form a primary higher-order simplex descriptor (i.e., Z_H) via the concatenate operation \oplus . *Bottom row*: First, we generate a persistence image PI_i for the input graph using the filtration $\mathfrak{F}_{\mathcal{G}}^i$ (where $i = \{1, 2, 3\}$, i.e., here we display 3 different filtrations including degree-based, betweenness-based, and closeness-based filtrations); we then feed these PIs into a CNN based model to obtain the image-level topological features. An attention mechanism is used to adaptively learn the correlation information among higher-order structures and different topological representations.

[1] Chen, Y., Jacob, R. A., Gel, Y. R., Zhang, J., & Poor, H. V. (2023). Learning Power Grid Outages with Higher-Order Topological Neural Networks. *IEEE Transactions on Power Systems*.

• The power DN has an inherent graph structure and can be represented as:

 $G = (V, \mathcal{E}, A)$, where V is the set of nodes (buses), \mathcal{E} is the set of edges (lines/ transformers), $A \in \mathbb{R}^{N \times N}$ is the adjacency matrix with N nodes.

- The **node feature** matrix $X_V \in \mathbb{R}^{N \times d_v}$ consists of active/reactive power demands, active/reactive power generation forecasted at the buses, and the voltage measurements.
- The edge feature matrix $X_e \in \mathbb{R}^{M \times d_e}$ consists of the resistance, reactance, base load capacity, maximum capacity, residual capacity, and power flow through branches.
- The outage detection is a graph level classification task.

hotnets/HOT-Nets (github.com)

Methodology: Higher-Order Topological Neural Networks

Generation of synthetic data and simulation of contingency events

- The circuit definition of the test networks in OpenDSS simulation software is used to emulate actual network flow measurements with varying scenarios.
- Considering the localized effect of contingency events in DNs, a subgraph approach is used for simulating network outages.

TABLE I
SUMMARY OF DATASETS USED IN GRAPH CLASSIFICATION TASK WITH
FULL OBSERVABILITY AT BUSES.

Dataset	Graphs	Nodes	s Edges†	Features _V	Features _E	classes
IEEE 37 Bus	200	39	35.34	2	8	2
IEEE 123 Bus	300	132	126.56	2	8	2
342 Bus LVN	500	390	432.39	2	8	2

The [†] means the average number of edges in a distribution network under contingency (edge failed).

TABLE II SUMMARY OF DATASETS USED IN GRAPH CLASSIFICATION TASK WITH PARTIALLY OBSERVABLE BUSES AND LINES.

Dataset	Graphs	Nodes	Edges [†]	$Features_{\mathcal{V}}$	$Features_{\mathcal{E}}$	Classes
IEEE 37 Bus'	300	39	37.34	5	6	2
IEEE 123 Bus'	300	132	122.87	5	6	2
342 Bus LVN'	300	390	446.74	5	6	2

The [†] means the average number of edges in distribution network under contingency (edge failed).

Dataset

Test Networks

The test networks used to validate the HOT-Nets model for outage detection include IEEE 37-bus, IEEE 123-bus, and 342-bus Low voltage network (meshed).

Base network- normal operating conditions. The source node is marked as 'S' with green color. The buses with loads are marked using blue and the interconnecting buses are colored black.

Illustration of a contingency event. The grey nodes are isolated by network failure and red edges represent failed components.

Results

Model Performance

OVERALL CLASSIFICATION PERFORMANCE (%) (\pm STANDARD DEVIATION) OF DIFFERENT METHODS ON TEST NETWORKS FOR A CASE WITH ALL BUSES OBSERVABLE. *** DENOTES THE HIGHLY STATISTICALLY SIGNIFICANT RESULT.

Datasets	RF	ANN	GCN	GAT	GIN	GraphSage	Set2Set	DiffPool	EigenGCN	AM-GCN	SNNs	HOT-Nets (ours)
IEEE 37 Bus	77.61±1.55	78.21±1.48	84.45±1.67	85.02±1.74	87.28±1.97	86.96±2.25	88.20±1.94	90.25±2.32	87.50±2.36	83.98±2.03	86.65±1.80	***97.70±1.64
IEEE 123 Bus	$68.50{\pm}0.25$	$73.15{\pm}0.85$	84.33±0.77	83.80±0.76	81.91±0.79	86.00±1.30	$76.67{\pm}0.82$	87.67±0.90	87.73±0.89	87.68±0.15	86.69±1.01	***90.33±0.73
342-bus LVN	$63.32{\pm}0.18$	68.07±0.72	75.05 ± 1.70	$73.62{\pm}1.98$	$74.80{\pm}1.91$	76.47±1.67	78.39±1.79	77.93±1.22	80.61±1.97	76.20±2.00	79.26±1.31	***83.68±2.03

CLASSIFICATION PERFORMANCE (%) (\pm STANDARD DEVIATION) OF DIFFERENT METHODS ON IEEE 37 Bus', IEEE 123 Bus', AND 342 Bus LVN' (I.E., NEW TEST CASE ON NETWORKS) WITH PARTIALLY OBSERVABLE DISTRIBUTION GRIDS. *** DENOTES THE HIGHLY STATISTICALLY SIGNIFICANT RESULT.

Datasets	RF	ANN	GCN	GAT	GIN	GraphSage	Set2Set	DiffPool	EigenGCN	AM-GCN	SNNs	HOT-Nets (ours)
IEEE 37 Bus'	83.60±0.16	85.28±0.49	91.96±0.37	93.82±0.25	92.81±0.63	93.70±0.50	92.00±0.26	94.60±0.40	93.66 ±0.23	94.24±0.25	94.42±0.19	***95.67±0.15
IEEE 123 Bus'	84.29±0.30	87.26±0.92	93.50±0.50	94.44±0.75	94.62±0.73	$95.03{\pm}0.37$	91.43±0.22	$95.29{\pm}0.43$	94.33±0.86	95.12±0.66	95.30±0.43	***97.66±0.33
342 Bus LVN'	$76.49 {\pm} 0.20$	76.57±0.30	83.11±0.34	83.95±0.46	85.44±0.52	84.67±0.59	83.95±0.93	$87.24{\pm}0.78$	83.76±0.50	85.95±0.61	89.47±0.17	***91.11±0.46

WERALL CLASSIFICATION PERFORMANCE (%) (\pm STANDARD DEVIATION) OF DIFFERENT METHODS ON IEEE 123 BUS'' WITH 30% SENSEDENOTES THE HIGHLY STATISTICALLY SIGNIFICANT RESULT.								SOR DENSITY. **				
Datasets	RF	ANN	GCN	GAT	GIN	GraphSage	Set2Set	DiffPool	EigenGCN	AM-GCN	SNNs	HOT-Nets (ours)
IEEE 123 Bus	5″ 70.43±0.34	78.23±0.20	81.53±0.57	82.37±0.72	83.92±0.56	83.75±0.38	84.53±0.58	85.20±0.43	86.36±0.75	87.69±0.74	88.11±0.69	***91.37±0.67

Ablation study

ABLATION STUDY OF THE NETWORK ARCHITECTURE.

Method	Arc	hitectur	e	Datasets			
	Hodge	Торо.	Att.	IEEE 37 Bus	IEEE 123 Bus		
HOT-Nets	1	1	1	***97.70	***90.33		
Node & TopoNets (NT-Nets)	×	1	1	85.00	86.61		
Edge & TopoNets (ET-Nets)	×	1	1	86.93	87.71		
HOT-Nets W/o Att.	1	1	×	93.49	88.59		
HOT-Nets With One Topo.	1	×	1	92.75	89.00		
HOT-Nets W/o Topo.	1	×	1	90.05	88.11		

ABLATION STUDY OF THE NETWORK ARCHITECTURE ON IEEE 123-Bus'. * DENOTES THE SIGNIFICANT RESULT.

Method	Arc	chitectur	Datasets	
	Hodge	Торо.	Att.	IEEE 123 Bus'
HOT-Nets	✓	1	1	*97.66
Node & TopoNets (NT-Nets)	×	1	1	86.33
Edge & TopoNets (ET-Nets)	×	1	1	96.17
HOT-Nets W/o Att.	1	1	X	94.53
HOT-Nets With One Topo.	1	×	1	95.65
HOT-Nets W/o Topo.	✓	×	1	92.35

Key Observations

- Our HOT-Nets model outperforms all the SOTA methods. The improvement gain of HOT-Nets over the runners-up ranges from 2.88% to 7.63%.
- A common limitation of the SOA methods is that they are incapable of incorporating both higher-order features and multi-scale local topological structures.
- The ablation study shows that when replacing the Hodge 1-Laplacian with the node or edge-level Laplacian, the graph classification accuracy is significantly affected. HOT-Nets outperforms NT-Nets with relative gains of 12.99% and 4.12% for IEEE 37-bus and IEEE 123-bus networks.
- Combining the simplicial convolutional layer and the fully trainable topological layer results in more informative learning of the underlying graph structure.

Contents

Outage detection in power distribution networks using higher-order topological neural networks (HOT-Nets)

Outage detection in power distribution networks using multi-parameter persistence

□ Introduction □ Methodology □ Dataset □ Results □ Key observations

[2] Uddin, Md. J., Olojede, D., Jacob, R. A., Coskunuzer, B., & Zhang, J., Detecting Power Grid Outages with Topological Machine Learning (Draft)

3

2

Outage management in power distribution networks using learning over graphs

Introduction

Bi-level filtration approach

Pipeline of bi-level filtration-based graph classification

Methodology

A toy graph example demonstrating the extraction of multiparameter persistence information

To test the **scalability** of the outage detection module, we have included the following large-size DNs:

- <u>IEEE 8500-Bus Test Feeder</u>: Contains both the primary and secondary levels of DN.
- <u>Sub-Region P1U of San Francisco Bay Area</u>: NREL's SMART-DS datasets. This is one of the 35 subregions and is close to a real-world network.

SUMMARY OF DATASETS USED IN GRAPH CLASSIFICATION TASK WITH PARTIALLY OBSERVABLE BUSES AND LINES.BC:JOSHEM, PLEASE ADD OTHER DATASETS' DETAILS

Dataset	Graphs	Nodes	Edges	\mathbf{Edges}^{\dagger}	$Features_{\mathcal{V}}$	$Features_{\mathcal{E}}$	Classes
IEEE 37 Bus'	1,000	39	38	37.34	5	6	2
IEEE 123 Bus'	1,000	132	131	122.87	5	6	2
342 Bus LVN'	1,000	390	460	446.74	5	6	2
IEEE 8500 Bus	300	4,875	4,874				2
San Francisco	300	18,585	18,563				2

1

CLASSIFICATION PERFORMANCE (%) (±STANDARD DEVIATION) OF DIFFERENT METHODS ON IEEE 37 Bus', IEEE 123 Bus', AND 342 Bus LVN' (I.E., NEW TEST CASE ON NETWORKS) WITH PARTIALLY OBSERVABLE DISTRIBUTION GRIDS.

Datasets	GCN	GAT	GIN	GraphSage	Set2Set	DiffPool	EigenGCN	AM-GCN	SNNs	HOT-Nets	Ours
IEEE 37 Bus'	91.96±0.37	93.82±0.25	92.81±0.63	93.70±0.50	92.00±0.26	94.60±0.40	93.66 ± 0.23	94.24±0.25	94.42±0.19	95.67±0.15	96.33±0.03
IEEE 123 Bus'	$93.50{\pm}0.50$	$94.44{\pm}0.75$	$94.62{\pm}0.73$	$95.03{\pm}0.37$	$91.43{\pm}0.22$	$95.29{\pm}0.43$	$94.33{\pm}0.86$	$95.12{\pm}0.66$	$95.30{\pm}0.43$	97.66±0.33	98.40±0.01
342 Bus LVN'	83.11±0.34	$83.95{\pm}0.46$	$85.44{\pm}0.52$	84.67±0.59	$83.95{\pm}0.93$	$87.24{\pm}0.78$	$83.76{\pm}0.50$	$85.95{\pm}0.61$	$89.47{\pm}0.17$	91.11±0.46	92.20±0.03

SINGLE VS. MULTIPERSISTENCE								
Dataset	Voltage	Branch Flow	MP-XGB	MP-MLP				
IEEE 37 Bus	91.33±0.06	86.33±0.05	96.33±0.03	96.00±0.04				
IEEE 123 Bus	$97.20{\pm}0.02$	$97.20{\pm}0.02$	98.40 ±0.01	97.60±0.02				
IEEE 342 Bus	93.00±0.02	$90.00{\pm}0.02$	$92.20{\pm}0.03$	$91.50{\pm}0.03$				
IEEE 8500 Bus	98.67±0.02	$97.67{\pm}0.02$	99.00±0.02	$98.00{\pm}0.02$				
San Francisco	96.67±0.02	$98.33{\pm}0.02$	99.33±0.01	99.67±0.01				

- The multi-persistence-based (MP) model achieves outstanding performance surpassing all the SOTA methods. Our model utilizes multi-persistence to extract finer topological structures from the network when compared to the single persistence used in HOT-Nets.
- The model performs well on larger networks with high accuracy.

Contents

1 Outage networ

Outage detection in power distribution networks using higher-order topological neural networks (HOT-Nets)

2

3

4

Outage detection in power distribution networks using multi-parameter persistence

Outage management in power distribution networks using learning over graphs

□ Introduction □ Methodology □ Testing on Networks □ Results □ Adding TDA

[3] Jacob, R., Paul, S., Chowdhury, S., Gel, Y. & Zhang, J. (2023). Real-Time Outage Management in Active Distribution Networks Using Reinforcement Learning over Graphs. (Under Review)

Conclusion and Future Works

Introduction

The concept of learning over graphs

Schematic of outage management in an example network with DERs (with and without grid forming ability), and sectionalizing/tie switches

Methodology

- A learning over-graphs approach, specifically reinforcement learning is developed for switching control during outages.
- Both reconfiguration and intentional islanding are considered for outage mitigation.
- The environment is composed of a DN model interface (DSS circuit) using a Python-based API and the graph replica of the DSS circuit.
- Policy network uses the state information from the environment to compute graph node embeddings and context embeddings using GNN and feedforward networks, respectively.
- A final feature vector that encompasses the two embeddings is computed by an MLP.

The learning framework developed includes the environment and the policy network architecture with GNN-based feature abstraction

Testing on Networks

Results

IEEE 13-bus scenario 1

IEEE 34-bus scenario 2

Sc2

Results

Performance comparison of the proposed model with SOTA methods

Notwork	Method	Scenario 1	Scenario 2
Network	Method	Mean time (s)	Mean time (s)
	GCAPS	0.0049	0.0056
12 hug	MLP	0.0039	0.0054
15-bus	BPSO	500.15	540.20
	MISOCP	3.12	5.23
	GCAPS	0.0030	0.0025
24 hug	MLP	0.0022	0.0020
54-bus	BPSO	2580.15	2540.20
	MISOCP	25.20	20.20

The training convergence plots for the policy models

• The response time for RL models is mostly agnostic to the network size.

- RL with MLP may result in invalid control actions.
- BPSO and MISOCP are about 5 and 3 orders of magnitude more expensive than the learned RL-based policies.

Adding TDA to the learning over graphs approach

Conclusion and Future Works

Conclusion

- The power distribution networks are inherent graphs, and the resilience-related tasks require considering the underlying topology of the DN.
- Integrating persistent homology into learning DNs allows us to extract the most characteristic topological descriptors of the distribution grid.
- The topological learning approaches used in power distribution networks exhibit resilience improvement and online decision-making capability.

Future direction

- □ Time-aware topological graph learning for DN/microgrid resilience improvement tasks.
- □ Multiparameter persistence-based learning for anomaly detection.
- □ TDA embedded graph learning approach for power DN restoration.

Thank You

