The University of Texas at Dallas

Learning Power Grid Outages with Higher-Order
Topological Neural Networks

linear 1 system . o wenit E

multldl Imary-

dBSIgII ““““mw =
inequ ®

=0 timization™:

POWer recursive structural

.....

rhscme

Presented By : Roshni Anna Jacob (UTD)
Collaborators:

Yuzhou Chen (Temple University)
Steve Paul, Souma Chowdhury (University at Buffalo)
Uddin Md. Joshem, Damilola Olojede, Baris Coskunuzer, Yulia R. Gel, and Jie Zhang (UTD)

Design and Optimization of Energy Systems (DOES) Laboratory The University of Texas at Dallas



Contents

Outage detection in power distribution networks using higher-order topological neural
networks (HOT-Nets)

O Introduction O Research Background O Methodology L1 Dataset U Results U Key observations

[1] Chen, Y., Jacob, R. A., Gel, Y. R., Zhang, J., & Poor, H. V. (2023). Learning Power Grid Outages with Higher-Order Topological Neural Networks. IEEE
Transactions on Power Systems.

Design and Optimization of Energy Systems (DOES) Laboratory The University of Texas at Dallas



Introduction

Motivation

The increasing frequency of extreme
weather-related outages and cyber attack
threats in the power grid.

90% of power disruptions
are attributed to failure in
distribution network.
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Introduction

Goal

Improve the resilience of power distribution
network using tools that are adaptable, online,

and time sensitive.
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Research Background

Filtration given by a union of growing balls and
Persistent Homol ogy extraction of persistence image
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Chazal, Frédéric, and Bertrand Michel. "An introduction to topological data analysis: fundamental
and practical aspects for data scientists.” Frontiers in artificial intelligence 4 (2021): 108.
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Research Background

Filtration on graphs and simplices

Example of generating simplicial complexes from a

lllustration of 0-d persistent homology on a toy graph G using a S'St”b”t'on network (DN) where each node represents a
node-based filter function f us.
Edge-to-face
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) ) Graph structure of power network. Simplicial complexes of
0-, 1-, 2-, and 3- simplex from left to right. power network.
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Research Background

Key take aways:

(1
Track the evolution of various patterns in the DN that (dis)appear
as we change the (dis)similarity threshold and record the birth Also...
and death information of each topological feature. Those with Hodge Laplacian analytics can be used
longer lifespan are called persistent (or topological signals) and to extend the convolutional operation
contain information about key mechanisms behind DN within graph neural networks (GNNs) to
functionality. account for complex interactions among
> /.\ multi-node substructures. It generalizes
. . the node-to-node diffusion to diffusion
over high order substructures.
L] LI L]
(2

Summarize all extracted topological features as persistence
diagram (PD), persistence landscape (PL), persistent image (PI),
etc. O-tim !
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Methodology: Higher-Order Topological Neural Networks

E? L o Y « The power DN has an inherent graph
L St TP 1
izt ¥ | structure and can be represented as:
T — —| ral |l O |=p| (=p : _
1ef e lreen | G=(WV,EA), where V is the set of
Iz & » 1 2 £-1 e i
A Zy’ 72 250 79 7y | ~ nodes (buses), € is the set of edges
T e \ | 2 (lines/ transformers), AeRV*N is the
13 3 ¢ adjacency matrix with N nodes
e, 5. o) =, J y '
4 B § = g i Nxd i
J PL B [y, 2| =  The nOd? feature_: matrix XyeRY*% consists
. o of  active/reactive  power  demands,
2 3 B § active/reactive power generation forecasted
=*g —> .3 at the buses, and the voltage measurements.
2 =
% \p1, 7 fo, « The edge feature matrix X,eRM*de consists
% b of the resistance, reactance, base load
- — Z — capacity, maximum capacity, residual
: 1. 7, capacity, and power flow through branches.
R L1413 3 ZT3

Fig. 1: Framework of our HOT-Nets model for graph classification. Top row: The higher-order simplices convolution (HoSC) module is used to extract higher- ¢ The OUtage dete Ctl on IS a g rap h I evel
order simplices embeddings and form a primary higher-order simplex descriptor (i.e., Zp) via the concatenate operation . Boftom row: First, we generate I . f t t k

a persistence image PI; for the input graph using the filtration §¢ (where ¢ = {1,2,3}, i.e., here we display 3 different filtrations including degree-based, classitication task.

betweenness-based, and closeness-based filtrations); we then feed these PIs into a CNN based model to obtain the image-level topological features. An attention

mechanism is used to adaptively learn the correlation information among higher-order structures and different topological representations.

[1] Chen, Y., Jacob, R. A., Gel, Y. R., Zhang, J., & Poor, H. V. (2023). Learning Power Grid Outages with Higher-Order hotnets/HOT-Nets (github.com)
Topological Neural Networks. IEEE Transactions on Power Systems.

Design and Optimization of Energy Systems (DOES) Laboratory The University of Texas at Dallas


https://github.com/hotnets/HOT-Nets

Methodology: Higher-Order Topological Neural Networks

Generation of synthetic data and
simulation of contingency events

o The circuit definition of the test
networks in OpenDSS simulation
software is used to emulate actual
network flow measurements with
varying scenarios.

o Considering the localized effect of
contingency events in DNs, a
subgraph approach is used for
simulating network outages.

Load the OpenDSS circuit for
network and obtain the

equivalent graph representation

Initialize N, R*, F*

Select a random node w; e
I and form a subgraph

with radius r*

v

Randomly remove edges
of fraction f* within
subgraph

'

Feed the new topology into
OpenDES circuit along with
load forccast

1

Perform power flow and evaluate
the power served at nodes

!

Store the outage scenano
with failed edges, power
served and power flow

|

TABLE I
SUMMARY OF DATASETS USED IN GRAPH CLASSIFICATION TASK WITH
FULL OBSERVABILITY AT BUSES.

Dataset Graphs Nodes Edges' Features,, Featuresg Classes
IEEE 37 Bus 200 39 35.34 2 8

IEEE 123 Bus 300 132 126.56 2 8

342 Bus LVN 500 390 432.39 2 8 2

The [f] means the average number of edges in a distribution network under
contingency (edge failed).

TABLE 1T
SUMMARY OF DATASETS USED IN GRAPH CLASSIFICATION TASK WITH
PARTIALLY OBSERVABLE BUSES AND LINES.

Dataset Graphs Nodes Edges' Features,, Featuress Classes

IEEE 37 Bus’ 300 39 37.34 5
IEEE 123 Bus’ 300 132 122.87 5
342 Bus LVN’ 300 390 446.74 5 6 2

The [f] means the average number of edges in distribution network under
contingency (edge failed).

Design and Optimization of Energy Systems (DOES) Laboratory

The University of Texas at Dallas



Dataset

Test Networks IEEE 37-bus DN 342-bus low voltage North American DN

The test networks used to
validate the HOT-Nets
model for outage detection
include IEEE 37-bus, IEEE
123-bus, and 342-bus Low
voltage network (meshed).

Base network- normal operating conditions. The source node is marked as ‘S’ with green color.
The buses with loads are marked using blue and the interconnecting buses are colored black.

lllustration of a contingency event. The grey nodes are isolated by network failure and red
edges represent failed components.

Design and Optimization of Energy Systems (DOES) Laboratory The University of Texas at Dallas



Results

Model Performance

0 OVERALL CLASSIFICATION PERFORMANCE (%) (= STANDARD DEVIATION) OF DIFFERENT METHODS ON TEST NETWORKS FOR A CASE WITH ALL BUSES
OBSERVABLE. *** DENOTES THE HIGHLY STATISTICALLY SIGNIFICANT RESULT.

- )

Datasets RF ANN GCN GAT GIN GraphSage  Set2Set DiffPool EigenGCN AM-GCN SNNs HOT-Nets (ours)

IEEE 37 Bus 77.61+1.55 78.21+1.48 84.45+1.67 85.0241.74 87.28+1.97 86.96+2.25 88.204+1.94 90.25+2.32 87.50+2.36 83.98+2.03 86.65+1.80] ***97.70+1.64
IEEE 123 Bus 68.50+0.25 73.15+0.85 84.3340.77 83.80+0.76 81.91+0.79 86.004-1.30 76.671+-0.82 87.67+0.90 87.734-0.89 87.68+0.15 86.69+1.01| ***90.33+0.73
342-bus LVN 63.32+0.18 68.07+0.72 75.05£1.70 73.624+1.98 74.80+-1.91 76.47+t1.67 78.39+1.79 77.93+1.22 80.61+£1.97 76.204-2.00 79.26+1.31] ***83.68+2.03

9 CLASSIFICATION PERFORMANCE (%) (&= STANDARD DEVIATION) OF DIFFERENT METHODS ON IEEE 37 Bus’, IEEE 123 Bus’, AND 342 Bus LVN’ (LE., NEW
TEST CASE ON NETWORKS) WITH PARTIALLY OBSERVABLE DISTRIBUTION GRIDS. *** DENOTES THE HIGHLY STATISTICALLY SIGNIFICANT RESULT.

- )

Datasets RF ANN GCN GAT GIN GraphSage Set2Set DiffPool EigenGCN AM-GCN SNNs [HOT-Nets (ours)

IEEE 37 Bus’ 83.6040.16 85.28+0.49 91.96+0.37 93.824-0.25 92.81+0.63 93.7040.50 92.004+0.26 94.60+0.40 93.66 £0.23 94.2440.25 94.4240.19| ***95.67+0.15
IEEE 123 Bus’ 84.2940.30 87.26+0.92 93.50+0.50 94.444-0.75 94.62+0.73 95.034+0.37 91.4340.22 95.294+0.43 94.33+0.86 95.124+0.66 95.304+0.43| ***97.66+0.33
342 Bus LVN’ 76.4940.20 76.574+0.30 83.11+0.34 83.95+0.46 85.4440.52 84.67+0.59 83.9540.93 87.24+0.78 83.76+0.50 85.95+0.61 89.4740.17| ***91.111-0.46

\_ _J
9 OVERALL CLASSIFICATION PERFORMANCE (%) (& STANDARD DEVIATION) OF DIFFERENT METHODS ON IEEE 123 BUS"’ WITH 30% SENSOR DENSITY. ***
DENOTES THE HIGHLY STATISTICALLY SIGNIFICANT RESULT.
Datasets RF ANN GCN GAT GIN GraphSage Set2Set DiffPool EigenGCN AM-GCN SNNs  HOT-Nets (ours)

IEEE 123 Bus” 70.43+0.34 78.234-0.20 81.5340.57 82.37+0.72 83.924-0.56 83.754-0.38 84.53+0.58 85.2040.43 86.364-0.75 87.69+0.74 88.1140.69 | ***91.37+0.67

Design and Optimization of Energy Systems (DOES) Laboratory The University of Texas at Dallas



Results

Ablation study

ABLATION STUDY OF THE NETWORK ARCHITECTURE ON IEEE 123-Bus’. *

ABLATION STUDY OF THE NETWORK ARCHITECTURE. DENOTES THE SIGNIFICANT RESULT.

Architecture Datasets Architecture Datasets

Method Method
Hodge Topo. An. IEEE 37 Bus IEEE 123 Bus Hodge Topo. Ar. IEEE 123 Bus’

HOT-Nets v v v **%97.70 **%90.33 HOT-Nets v v v *97.66
Node & Topo.-Nets (NT-Nets) X v v 85.00 86.61 Node & Topo.-Nets (NT-Nets) X v v 86.33
Edge & Topo.-Nets (ET-Nets) X v v 86.93 87.71 Edge & Topo.-Nets (ET-Nets) X v v 96.17
HOT-Nets W/o Att. v v X 93.49 88.59 HOT-Nets W/o Att. v v X 94.53
HOT-Nets With One Topo. v X v 92.75 89.00 HOT-Nets With One Topo. v X v 95.65
HOT-Nets W/o Topo. v X v 90.05 88.11 HOT-Nets W/o Topo. v X v 92.35

Design and Optimization of Energy Systems (DOES) Laboratory The University of Texas at Dallas



Key Observations

= Our HOT-Nets model outperforms all the SOTA methods. The improvement gain of HOT-

Nets over the runners-up ranges from 2.88% to 7.63%.

= A common limitation of the SOA methods is that they are incapable of incorporating both

higher-order features and multi-scale local topological structures.

= The ablation study shows that when replacing the Hodge 1-Laplacian with the node or
edge-level Laplacian, the graph classification accuracy Is significantly affected. HOT-Nets
outperforms NT-Nets with relative gains of 12.99% and 4.12% for IEEE 37-bus and IEEE

123-bus networks.

= Combining the simplicial convolutional layer and the fully trainable topological layer

results in more informative learning of the underlying graph structure.

Design and Optimization of Energy Systems (DOES) Laboratory The University of Texas at Dallas
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Outage detection in power distribution networks using multi-parameter persistence

O Introduction 1 Methodology QO Dataset O Results 1 Key observations
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Introduction

Bi-level filtration approach

Node and edge filtrations

Gs

Gs

G1o
G1o

Pipeline of bi-level filtration-based graph classification
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Methodology

A toy graph example demonstrating the extraction of multiparameter persistence information
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Dataset

To test the scalability of the outage detection module,
_ _ _ SUMMARY OF DATASETS USED IN GRAPH CLASSIFICATION TASK WITH
we have included the following large-size DNSs: PARTIALLY OBSERVABLE BUSES AND LINES.BC:JOSHEM, PLEASE ADD

_ OTHER DATASETS’ DETAILS
= |EEE 8500-Bus Test Feeder: Contains both the

] Dataset Graphs Nodes Edges Edges’ Features,, Featuress Classes
primary and secondary levels of DN.

_ _ , IEEE 37 Bus’ 1,000 39 38 3734 5 2

= Sub-Region P1U of San Francisco Bay Area: NREL’s [EEE 123 Bus' 1000 132 131 12287 5 5

SMART-DS datasets. This is one of the 35 sub- 342 Bus LVN’ 1,000 390 460 446.74 5 6 2

. . IEEE 8500 B 300 4,875 4,874 2
regions and is close to a real-world network. o

San Francisco 300 18,585 18,563 2

Design and Optimization of Energy Systems (DOES) Laboratory The University of Texas at Dallas



Results

o

CLASSIFICATION PERFORMANCE (%) (=STANDARD DEVIATION) OF DIFFERENT METHODS ON IEEE 37 Bus’, IEEE 123 Bus’, AND 342 Bus LVN’ (LE., NEW
TEST CASE ON NETWORKS) WITH PARTIALLY OBSERVABLE DISTRIBUTION GRIDS.

Datasets GCN GAT GIN GraphSage  Set2Set DiffPool EigenGCN AM-GCN SNNs HOT-Nets Ours

IEEE 37 Bus’ 91.96+0.37 93.82+0.25 92.814+0.63 93.70+0.50 92.00+0.26 94.60+0.40 93.66 +0.23 94.24+40.25 94.4240.19 95.67+0.15 | 96.33+0.03
IEEE 123 Bus’ 93.50+0.50 94.444+0.75 94.624+0.73 95.03+0.37 91.43+0.22 95.29+0.43 94.3340.86 95.12+0.66 95.30+0.43 97.66+0.33 | 98.40+0.01
342 Bus LVN’  83.11+0.34 83.95+0.46 85.4440.52 84.674+0.59 83.95+0.93 87.24+0.78 83.7640.50 85.95+0.61 89.4740.17 91.11+0.46 | 92.20+0.03

SINGLE VS. MULTIPERSISTENCE

Dataset

Voltage

Branch Flow MP-XGB

MP-MLP

IEEE 37 Bus
IEEE 123 Bus
IEEE 342 Bus
IEEE 8500 Bus

San Francisco

91.33+0.06
97.2040.02
93.00+0.02
98.6740.02
96.67+0.02

86.33+0.05
97.2040.02
90.00+0.02
97.67+0.02
98.33+0.02

96.3310.03
98.40+0.01
92.204-0.03
99.00+0.02
99.33+0.01

96.00+0.04
97.60+0.02
91.50+0.03
98.00+0.02
99.67+0.01

Design and Optimization of Energy Systems (DOES) Laboratory

The University of Texas at Dallas



Key Observations

= The multi-persistence-based (MP) model achieves outstanding performance
surpassing all the SOTA methods. Our model utilizes multi-persistence to extract
finer topological structures from the network when compared to the single

persistence used in HOT-Nets.

= The model performs well on larger networks with high accuracy.

Design and Optimization of Energy Systems (DOES) Laboratory The University of Texas at Dallas
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Outage management in power distribution networks using learning over graphs
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Introduction

The concept of learning
over graphs
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Schematic of outage management in an example network with DERs
(with and without grid forming ability), and sectionalizing/tie switches
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Methodology

The learning framework developed includes the environment and

. . the policy network architecture with GNN-based feature abstraction
» A learning over-graphs approach, specifically

reinforcement learning is developed for [e=cin] e e
switching control during outages. P — ; B ol domain |
Fiin(X, £) = Linear(y;),i € N : failed lines S i
« Both reconfiguration and intentional islanding Ly ayers, 1 €11, 1 i o |
. . . g [y switches Extract connected i
are considered for outage mitigation. O ooy | [E |1 Enironment S| |
g I} Set demand & . i
» The environment is composed of a DN model b rgiomeatin M)
interface (DSS circuit) using a Python-based ] § s ) pice |
API and the graph replica of the DSS circuit. | ; i
« Policy network uses the state information L rcaures Ml
from the environment to compute graph node o ] R e EES ”
embeddings and context embeddings using 5 N en——r— ;
GNN and feedforward networks, respectively. b L o g Vv network |
« A final feature vector that encompasses the [ ] T S
tWO embeddlngs IS ComDUted by an MLP' L El Bernoulli distribution | P::‘ngzllt:itt:zk i
GNN-based feature abstraction Action =m=—mmm 'Iv'?aTeEd_y ___________________ i

(Switch
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Testing on Networks

IEEE 13-bus DN IEEE 34-bus DN \848
650 822 .’ 846‘.
645 632 633 634 swie”
646 820 Wo'364 844
. HKswl o 818
sw3ih 670 swi 802 806 808 812 814 830 860 8364840
* SW2 \ 816 4 826 834
-“—. L}
611 684 1971 "592 675 9\ E 6, iswl 888 890
652 680 W -,SWS: R Y15
. ’
DER nodes:  Grid forming @Grid feeding “&;;vﬁl

Switches: = = = Sectionalizing = = = Tie

856
Scenario 1 & Scenario2 X 828 830 854

Scenario 1
Scenario 1 switch status load status
switch status load status GCAPS
GCAPS L
MLP BPSO
BPSO Decision MISOCP
MISOCP Variables S A LI FLEL P LS ISR EFTSFE S
swl sw2 sw3 swd4 671 634a 634b 634c 611 652 670b Scenano 2
Scenario 2 . switch status load status
switch status load status GCAPS
GCAPS |
MLP
MLP
BPSO
BPSO
MISOCP
MISOCP

swl sw2 sw3 swd4 671 634a 634b 634c 611 652 670b
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Results

IEEE 13-bus scenario 1 IEEE 34-bus scenario 2
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= —_
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z g 105 ol 3 z B GCAPS L
= g o 0 o900 1000 5 0 mapgtt 8 mme  w
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Results

Performance comparison of the proposed The training convergence plots for the policy models
model with SOTA methods a b
Scenario 1 Scenario 2 03 | —— SCAPS_24 Bus
—— MLP_34_B
Network | Method | nro.h time (s) | Mean time (s) —
LGCAPS 0.0049 0.0056 | 0.2
13 bas MLP 0.0039 0.0054 T ®
' BPSO 500.15 540.20 202 g
MISOCP 3.12 5.23 = @
LGCAPS 0.0030 0.0025 | 0.1
2bus MLP 0.0022 0.0020 — GCAPS_13 Bus
BPSO 2580.15 2540.20 —— MLP_13_Bus
MISOCP 25.20 20.20 0.1
0.00 025 0.50 0.75 1.00 1.25 1.50 1.75 00 02 04 06 08 10 12 14
Steps e Steps o6

o The response time for RL models is mostly agnostic to the network size.

o RL with MLP may result in invalid control actions.

o BPSO and MISOCP are about 5 and 3 orders of magnitude more expensive than the learned RL-based
policies.
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Adding TDA to the learning over graphs approach
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Conclusion and Future Works

Conclusion

o The power distribution networks are inherent graphs, and the resilience-related tasks require considering
the underlying topology of the DN.

o Integrating persistent homology into learning DNs allows us to extract the most characteristic topological
descriptors of the distribution grid.

o The topological learning approaches used in power distribution networks exhibit resilience improvement

and online decision-making capability.

Future direction

O Time-aware topological graph learning for DN/microgrid resilience improvement tasks.
O Multiparameter persistence-based learning for anomaly detection.

U TDA embedded graph learning approach for power DN restoration.
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Thank You
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