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Introduction

https://www.clp.com.hk/en/help-support/power-outages-voltage-dips/understanding-outages-voltage-dips

Motivation

The increasing frequency of extreme 

weather-related outages and cyber attack 

threats in the power grid.

Distribution network

▪ Large size and spread

▪Unobservability with 

limited sensors

90% of power disruptions 

are attributed to failure in 

distribution network.
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Introduction

Goal  

Improve the resilience of power distribution 

network using tools that are adaptable, online, 

and time sensitive.
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Research Background

https://towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0

Two noisy clusters of data and the corresponding 0-d persistence diagram

Persistent Homology
Filtration given by a union of growing balls and 

extraction of persistence image

Chazal, Frédéric, and Bertrand Michel. "An introduction to topological data analysis: fundamental 

and practical aspects for data scientists." Frontiers in artificial intelligence 4 (2021): 108.
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Research Background

Illustration of 0-d persistent homology on a toy graph G using a 

node-based filter function f

Filtration on graphs and simplices

Hofer, Christoph, et al. "Graph filtration learning." International Conference on Machine Learning. PMLR, 2020.

0-, 1-, 2-, and 3- simplex from left to right. 

Example of generating simplicial complexes from a 

distribution network (DN) where each node represents a 

bus.

Node-to-edge incidence matrix

Edge-to-face 

incidence matrix

Graph structure of power network. Simplicial complexes of 

power network.
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Research Background

Also…

Hodge Laplacian analytics can be used 

to extend the convolutional operation 

within graph neural networks (GNNs) to 

account for complex interactions among 

multi-node substructures. It generalizes 

the node-to-node diffusion to diffusion 

over high order substructures.

Track the evolution of various patterns in the DN that (dis)appear 

as we change the (dis)similarity threshold and record the birth 

and death information of each topological feature. Those with 

longer lifespan are called persistent (or topological signals) and 

contain information about key mechanisms behind DN 

functionality.

Summarize all extracted topological features as persistence 

diagram (PD), persistence landscape (PL), persistent image (PI), 

etc.

1

2

Key take aways:
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Methodology: Higher-Order Topological Neural Networks

[1] Chen, Y., Jacob, R. A., Gel, Y. R., Zhang, J., & Poor, H. V. (2023). Learning Power Grid Outages with Higher-Order 
Topological Neural Networks. IEEE Transactions on Power Systems.

• The power DN has an inherent graph 

structure and can be represented as:

 𝓖 = (𝑽, 𝓔, 𝑨) , where 𝐕  is the set of 

nodes   (buses), 𝓔 is the set of edges 

(lines/ transformers), 𝑨𝜖ℝ𝑁×𝑁  is the 

adjacency matrix  with 𝑁 nodes.

• The node feature matrix 𝑿𝑽𝜖ℝ
𝑵×𝒅𝒗 consists 

of active/reactive power demands, 

active/reactive power generation forecasted 

at the buses, and the voltage measurements.

• The edge feature matrix 𝐗𝒆𝜖ℝ
𝑴×𝐝𝒆 consists 

of the resistance, reactance, base load 

capacity, maximum capacity, residual 

capacity, and power flow through branches.

• The outage detection is a graph level 

classification task.

hotnets/HOT-Nets (github.com)

https://github.com/hotnets/HOT-Nets
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Methodology: Higher-Order Topological Neural Networks

o The circuit definition of the test 

networks in OpenDSS simulation 

software is used to emulate actual 

network flow measurements with 

varying scenarios.

o Considering the localized effect of 

contingency events in DNs, a 

subgraph approach is used for 

simulating network outages.

Generation of synthetic data and 

simulation of contingency events
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Dataset

IEEE 37-bus DN 342-bus low voltage North American DN

Base network- normal operating conditions. The source node is marked as  ‘S’ with green color. 

The buses with loads are marked using blue and the interconnecting buses are colored black.

Illustration of a contingency event. The grey nodes are isolated by network failure and red 

edges represent failed components.

The test networks used to 

validate the HOT-Nets 

model for outage detection 

include IEEE 37-bus, IEEE 

123-bus, and 342-bus Low 

voltage network (meshed).

Test Networks
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Results

Model Performance

1

2

3
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Results

Ablation study
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Key Observations

▪ Our HOT-Nets model outperforms all the SOTA methods. The improvement gain of HOT-

Nets over the runners-up ranges from 2.88% to 7.63%.

▪ A common limitation of the SOA methods is that they are incapable of incorporating both 

higher-order features and multi-scale local topological structures.

▪ The ablation study shows that when replacing the Hodge 1-Laplacian with the node or 

edge-level Laplacian, the graph classification accuracy is significantly affected. HOT-Nets 

outperforms NT-Nets with relative gains of 12.99% and 4.12% for IEEE 37-bus and IEEE 

123-bus networks. 

▪ Combining the simplicial convolutional layer and the fully trainable topological layer 

results in more informative learning of the underlying graph structure.
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Introduction

Bi-level filtration approach 

Node and edge filtrations
Pipeline of bi-level filtration-based graph classification
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Methodology

A toy graph example demonstrating the extraction of multiparameter persistence information
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Dataset

To test the scalability of the outage detection module, 

we have included the following large-size DNs:

▪ IEEE 8500-Bus Test Feeder: Contains both the 

primary and secondary levels of DN.

▪ Sub-Region P1U of San Francisco Bay Area: NREL’s 

SMART-DS datasets. This is one of the 35 sub-

regions and is close to a real-world network.
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Results

1

2
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Key Observations

▪ The multi-persistence-based (MP) model achieves outstanding performance 

surpassing all the SOTA methods. Our model utilizes multi-persistence to extract 

finer topological structures from the network when compared to the single 

persistence used in HOT-Nets.

▪ The model performs well on larger networks with high accuracy. 
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Introduction

Schematic of outage management in an example network with DERs 

(with and without grid forming ability), and sectionalizing/tie switches 

The concept of learning 
over graphs

Illustrative Problem

Learning over Graphs for 
Resilience Decision-Support

Smart Grid Network

Networked Multi-Robotic Systems

Telecommunication Network

NoCS’ Characteristics

1. Large (10K+ nodes), multi-layered

2. Heterogonous nodes/edges

3. Expensive to simulate

4. Uncertainties in state/recovery
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Methodology

The learning framework developed includes the environment and 
the policy network architecture with GNN-based feature abstraction

• A learning over-graphs approach, specifically 

reinforcement learning is developed for 

switching control during outages.

• Both reconfiguration and intentional islanding 

are considered for outage mitigation.

• The environment is composed of a DN model 

interface (DSS circuit) using a Python-based 

API and the graph replica of the DSS circuit. 

• Policy network uses the state information 

from the environment to compute graph node 

embeddings and context embeddings using 

GNN and feedforward networks, respectively. 

• A final feature vector that encompasses the 

two embeddings is computed by an MLP.
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Testing on Networks

IEEE 13-bus DN IEEE 34-bus DN

Scenario 1

Scenario 2

Scenario 1

Scenario 2

Decision 

Variables
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Results

IEEE 13-bus scenario 1

Resilience

improvement

IEEE 34-bus scenario 2

Resilience

improvement
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Results

Performance comparison of the proposed 

model with SOTA methods

The training convergence plots for the policy models

o The response time for RL models is mostly agnostic to the network size.

o RL with MLP may result in invalid control actions.

o BPSO and MISOCP are about 5 and 3 orders of magnitude more expensive than the learned RL-based 

policies.
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Adding TDA to the learning over graphs approach
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Conclusion and Future Works

o The power distribution networks are inherent graphs, and the resilience-related tasks require considering 

the underlying topology of the DN. 

o Integrating persistent homology into learning DNs allows us to extract the most characteristic topological 

descriptors of the distribution grid.

o The topological learning approaches used in power distribution networks exhibit resilience improvement 

and online decision-making capability.

❑ Time-aware topological graph learning for DN/microgrid resilience improvement tasks.

❑ Multiparameter persistence-based learning for anomaly detection.

❑ TDA embedded graph learning approach for power DN restoration.

Conclusion

Future direction
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Thank You

28
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