Prof. Dr. Jochen Garcke Dr. Daniela Steffes-lai, Dr. Rodrigo Iza-Teran, Mandar Pathare, Tom Klein

Analysing Data From Many Car Crash Simulations

Fraunhofer

Fraunhofer Institute for Algorithms and Scientific Computing SCAI

SCAI

Machine Learning (ML) in (Virtual) Product Development

ML combined with domain expertise

assist engineer in simulation data analysis workflow

- ML allows analysis of complex data arising from detailed numerical simulations during (virtual) product development
- use ML to
 - simplify data analysis in R&D process
 - assist development engineer
- for physical data observe domain knowledge during analysis
- Fraunhofer SCAI develops tools for comparative and explorative analysis of data from numerical simulations, e.g.
 - automotive crashworthiness with FEM
 - forming, e.g. cup drawing
 - fluid flows
 - wind turbines under (turbulent) load

ViPrIA

GEFÖRDERT VOM

Page 2 04.2023 © Fraunhofer SCAI

Components of Simulation Data Analysis Workflow

Page 3 04.2023 © Fraunhofer SCAI

Comparative Analysis of Many Simulations

Measure and Event Detection

Current data analytics capabilities of SCAI tools

- Compare all models in a project phase to detect, categorize and save changes (measures) automatically
- Comparatively assert the effect of the detected measures on many simulations (events)
- Automated similarity and outlier analysis

Challenges to extract the most interesting measures

- characteristics of CAE data, especially geometrical changes, as features for ML algorithms
- bringing the applied model changes into relation with the detected events, correlation analysis
- learn from these relationships for future development projects

open FE- model of Toyota Yaris http://www.ncac.gwu.edu/vml/models.html

Page 04.2023 © Fraunhofer SCAI

Design Measures – (Geometric) Diff for Inputdecks

- identification and interactive exploration of the design changes between two FEM models
 - detection of thickness and material changes
 - duplicate parts (translated / rotated parts)
 - new / missing parts and elements
 - changes in HAZ, RBEs, welds
 - changes in contours, holes, adhesives
 - PID grouping in GUI
 - Animator plugin or standalone batch mode
- documentation of design changes (measures)
 - automatic PDF reporting
 - JSON export
- comparison FE-SurfaceMesh vs. CAD-HullMesh

identification of geometry and mesh changes

detection of an extended contour and a closed hole

Detection of Events vs. Predecessor

- comparison of two FEM simulation results
 - based on any node or element function
 - semantic segmentation handles different geometry or PIDs
 - automatic PDF documentation
 - JSON export for further processing and usage, e.g. integration in SCALE.result
- interactive visualization in Animator
 - filtering of most influenced parts
 - visualize differences per part over time
 - highlighting of regional areas of interest

most influenced parts at 20ms, 30ms, after change of lower load path part thickness st

"metricvalue_L1Norm" :

structural parts in middle and upper load path are detected based on largest deviations

open FE- model of Toyota Yaris http://www.ncac.gwu.edu/vml/models.html

Similarity Analysis and Result Exploration

Comparison of multiple FEM simulation results

- analysis of the impact of model changes by overview over many simulations
- offline bulk data processing and interactive exploration
- automatic identification of clusters (simulations that behave similarly)
- automatic determination of **outliers** (simulations outside the clusters) and ranking of their severity
- existing results can be updated easily with a new simulation (event indicator)
- structured data representation (JSON)
 - can integrate ModelCompare results in dashboard
 - can be based on the capabilities of SimCompare

SimExplore

organization of many simulation results

- use suitable concepts of similarity to arrange (embed) simulation results in overview diagram
- we use new, patented method for the representation of simulation data (A Geometrical Method for Low-Dimensional Representations of Simulations DOI: 10.1137/17M1154205)
- can be understood as a Geometric Fourier Basis

Page 10

Physical Data Representation Using Surface "Fourier"-Modes

informed machine learning

- geometry aware data representation allows
 - easy overview over several simulation runs
 - data reduction that simplifies analysis pipeline

organization of many simulation results

- use suitable concepts of similarity to arrange (embed) simulation results in overview diagram
- we use patented method for the representation of simulation data (A Geometrical Method for Low-Dimensional Representations of Simulations DOI: 10.1137/17M1154205)

Informed ML - A taxonomy and survey of integrating knowledge into learning systems. *IEEE TKDE, 2023.* Page 11 © Fraunhofer SCAI

Implementation of Interactive Event Detection Workflow: SimExplore

online interactive phase

Input: results from offline / batch phase

Output:

- component score: parts with main deviations
- simulation IDs with cluster/outlier information per part, time step and node/element function
- outlier score over time per (relevant) part identifies interesting time steps
- visualization via interactive dashboards

Page 14 04.2023 © Fraunhofer SCAI

SimExplore: Interactive Analysis

SimExplore

SCAI

Mesh function maximum value : 717.4074

Behavior Detection Workflow: After Several Simulations

post-processing of several simulation results

Input: results from initialization phase

Output:

- analysis results with cluster/outlier information per part, time step and node/element function
- outlier score indicates if there are "interesting" parts (and time steps) deviating "strongly" from earlier simulations generated so far in development process

Cluster Indicator:

- clustering algorithm identifies distinct behaviors
- explorative visualization allows confirmation of cluster by engineer
- for engineering task focus on interesting cluster, e.g. for optimization per cluster

Anomaly Detection Workflow: After Each Simulation

offline post-processing of each simulation

Input: results from initialization phase

Output:

- analysis results with cluster/outlier information per part, time step and node/element function
- outlier score indicates if there are "interesting" parts (and time steps) deviating "strongly" from earlier simulations generated so far in development process

Event Indicator:

- new simulation is between existing behavior modes
- good or bad ?

Correlations between model changes and events

Case Study Toyota Yaris

Comparison of current simulation with its predecessor

- High distance in embedding space indicates very different behaviour
- All applied changes detected with ModelCompare
- Simultaneous view of input and output changes is enabled
- Embedding allows correlation analysis between (scalar) changes and resulting deformation patterns of parts

Curr-Pred

Graph-based Data Representation

Knowledge Graph Advantage

Building a knowledge layer that provides a new representation of data

- Quicker decision making
- Improving design guideline
- Combining structural and unstructural data

automotive development. In IEEE ICKG 2022.

Page 22 16.09.2024 © Fraunhofer SCAI

Fraunhofer

Statistical Analysis and Optimization of Parameter-Dependent Problems

adaptive DoE based on expected improvement

Fraunhofer

Page 23 16.09.2024 © Fraunhofer SCAI

Data Analysis in the Crashworthiness Development Process

machine learning contributions and ongoing research

- ML-assistance tools simplify handling of data from many simulations
 - identification of behavior modes or outliers
 - investigation of correlations between design changes and results
- interactive exploration allows intuitive overview of simulation behavior
- add-on functionality for SDM (Scale) and/or post-processor (GNS Animator)
- organization of CAE process data in graph database / knowledge graph
 - prediction of similarity of simulations and parts
 - provide knowledge in connection with LLM
- research on aligning simulation behavior with design changes
 - fingerprints per development stage DoE
 - identify relevant design changes for outliers
 - make design suggestions
- research on exploiting LLMs / foundation models in CAE
 - how can LLMs-agents help in learning/using/steering the CAE workflow
 - are there foundation models for geometries ?

Support CAE simulation data analysis workflow: Software ModelCompare, SimCompare, and SimExplore

scai.fraunhofer.de/ndv

caewebvis.scai.fraunhofer.de

web-demo for head impact data

Page 25 16.09.2024 © Fraunhofer SCAI