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1. Motivation & Problem Statement

Gap in Current Additive Manufacturing Monitoring

Existing monitoring O My intelligent AM monitoring
systems WHAT'S & validation system

MISSING

 Mostly post-process inspections * Multi-sensor fusion

.. . . * Machine learning-driven detection
» Limited real-time defect detection &

_ _ Integration of sensing, ML, and » Real-time structural validation
* Poor integration of structural validation for real-time quality

validation assurance . Decision-rnaking-in—the-loop
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Manufacuring process Real-time validation [nstantaneous evaluation
and decision-making
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printing cycle quality guaranteeing pull off and ready for use
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in-situ information
extraction

model update
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manufacturing in-situ
process structure validation

structural validation
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J. Digital Twin

What a digital twin is: A live computer model of a real system that
stays synced with sensor data. Not just CAD.

* Information flows bidirectionally
between the virtual representation and
physical counterpart.

* These information flows may be
through automated processes, human-
driven processes, or a combination of

the two.

FROM PHYSICALTO VIRTUAL

Sensor fusion, data assimilation,
inverse problems

Physical {¢e) Virtual
counterpart representation

Sensors and observing Modeling and simulation;
systems, data acquisition, artificial intelligence;
and data integration first-principles, mechanistic,
and empirical models;
and visualization
FROM VIRTUAL TO PHYSICAL

Automated control and decision-making
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J. Digital Twin

* Decision Maker: Uses DT insights to decision-maker
Issue controls l
query
» Actions are directed towards the physical

TI‘GSpOI‘lSG

counterpart virtual representation

 Queries are directed towards the virtual ‘ - -a-
representation G

* Query/Response Loop: The virtual measurements
representation answers targeted phys1cal counterpart
guestions and provides predictions for e L Q‘O <
informed decisions - o o,

execute
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4. Model-hased Simulation-in-the-loop Validation
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4. Model-hased Simulation-in-the-loop Validation

Table 1
Tensile and DIC test results with stress and strain difference.

Specimen Test type Number of Averaged Strain standard Strain Averaged Stress standard Stress difference
samples strain (pe) deviation difference (pe) stress (MPa) deviation (MPa)

Without impactful defect Tensile test 10 19600 80.10 - 49.59 0.24 -
Without impactful defect DIC test 10 20500 86.32 900 50.61 0.28 1.02
With impactful defect Tensile test 10 15528 91.45 - 40.10 0.37 -
With impactful defect DIC test 10 16600 102.96 1072 41.43 0.43 1.33

Table 2
Material property from tensile stress—strain for FEA.

Property Density (gfmm3) Young’s modulus (MPa) Poisson’s ratio Strain at UTS (ue) Ultimate Tensile Strength (UTS) (MPa)

Value 1.36 3000 0.36 19600 49.59

1. Fu, Y., Downey, A. R., Yuan, L., Huang, H. T., & Ogunniyi, E. A. (2025). Additive Manufacturing, 98, 104631.
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ABAQUS/CAE
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from part import *

from material import *
from assembly import *
from load import *

from mesh import *

from optimization import *
from job import *

Module import

Creat sketch object T tati ",
from sketch import * annotations :

mdb.models['Model-1'].ConstrainedSketch (name="'__ profile ', sheetSize=200.0)
mdb.models['Model-1'].sketches['_ profile '].Line(pointl=(0.0, 0.0), point2=( {
0.0, 30.0))

mdb.x;u;c'iglls;;ltlgjiflfl'].sketches['_profile_':.Line(pointl=(0.0, 30.0), point2=(| yraw model sketch "id": 125686,
ib.models['Model-1'].Part (dimensionality=THREE_D, name='Dogboen_test', type=<df—(Creat model
gy i g v e A - oy WO “segmentation”: [164.81, 417.51, 164.81, 444.46]
0.3
960.0, 1.0), (1050.0, 3.0)))
ib.models['Model-1'].EncastreBC (createStepName='Step-1', localCsys=None, name=
.models['Model-1"'].rootAssembly.regenerate ()

.models['Model-1'].sketches['_ profile '].Line(pointl=(15.0, 30.0), point2= " 4 "o,
(15.0, -25.0)) Categor‘y_ld * 2)
" ",
DEFORMABLE_BODY) iscrowd": © )
.models['Model-1'].parts['Dogboen_test'].BaseSolidExtrude (depth=5.0, sketch=<f— Extrude sketch
ib.models['Model-1'] .Material (name='PLAMaterial')
ib.models['Model-1"'] .materials['PLAMaterial'].Density(table=((7.8e-09, ), )) " image id "o, 242287
e e 1 2 - )
.models['Model-1'].materials['PLAMaterial'].Plastic(table=((770.0, 0.0), ( Property Settlng " "
800.0, 0.01), (830.0, 0.02), (850.0, 0.1), (900.0, 0.15), (930.0, 0.35), ( area": 42061. 8@34@@@@@91,
ib.models ['Model-1"'].rootAssembly.Set (cells= n ", [ ]
mdb.models['Model-1'] .rootAssembly. instances["Dogboen_ test-1'].cells.getSequenceFromMask ( bbox = 19 = 23 J 383 L 18 J 3 14 @, 5 b ] 244 LA 46
("[#8 1', ), ), name='set-1')
'BC-1', region=mdb.models['Model-1'].rootAssembly.sets['Set-1"]) B()u]’]da]’y C()nditi()n
.models['Model-1'].parts['Dogboen_test'].generateMesh() Settlng
b.Job (activateLoadBalancing=False, atTime=None, contactPrint=OFF) i
ib.jobs['TensileTest'] .submit (consistencyChecking=0OFF, datacheckJob=True)‘— .]Ob Subml‘[tmg

1. Fu, Y., Downey, A. R., Yuan, L., Huang, H. T., & Ogunniyi, E. A. (2025). Additive Manufacturing, 98, 104631.
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Table 3
System configurations for the real-time computational time calculation.

Hardware System 1 System 2 System 3

Processor Intel core i7-3770 AMD Ryzen Threadripper 3970X Intel Xeon Gold 6250
Number of processor 1 1 2

Total core count 4 cores, 8 threads 32 cores, 64 threads 16 cores, 32 threads
Base clock speed 3.4 GHz 3.7 GHz 3.9 GHz

RAM 8 GB 128 GB 96 GB

Operating system Windows 10, 64 Bit Windows 10, 64 Bit Windows 10, 64 Bit

1. Fu, Y., Downey, A. R., Yuan, L., Huang, H. T., & Ogunniyi, E. A. (2025). Additive Manufacturing, 98, 104631.
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ounachievable real-time validation for current system

@ achievable real-time validation for current system

o

number of defects
number of defects
number of defects

41Q0 o© Q e @ . e @ .
minimum detectable minimum detectable minimum detectable
defect defect defect

100 200 300 400 500 ' 100 200 300 400 500 600 100 200 300 400 500
total defect area (pixel) total defect area (pixel) total defect area (pixel)

number of defects
150 11 133324454376

L L
3154 3149

| image segmentation
125 model update
p 2635 2708
i FEA 245.6
1001 - : 227.7 2
decision-making :
- _ 196.1
| 161.3
: 1 133913871410 141.2
g g 1023 |
7.4
od 44 I

0

W
(=]

computational time (s)
<
W
computational time (s)

[\
(o}

12 25 78 98 108202258274312387415456523559591

image model FEA decision
segmentation  update making total defect area (pixel)
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9. Data-driven Real-time Structural Validation

Real-time Product Structural Quality Validation for
Material Extrusion Additive Manufacturing
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