

Uncertainty Quantification in Machine Learning Models for High-Rate State Estimation

Yang Kang Chua^[1], Daniel Coble^[2], Arman Razmarashooli^[3], Steve Paul^[1], Daniel A. Salazar Martinez^[3], Chao Hu^[1], Austin R.J. Downey^[2,4], Simon Laflamme^[3,5]

[1] School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, Storrs, CT 06269,USA

[2] Department of Mechanical Engineering, University of South Carolina, Columbia, USA

[3] Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA, 50010, USA

[4] Department of Civil and Environmental Engineering, University of South Carolina, Columbia, USA

[5] Department of Electrical and Computer Engineering, Iowa State University, Ames, IA,50010, USA

Background

High-Rate Dynamic Systems

• Systems experiencing dynamic events with amplitudes higher than 100 g_n over a duration of less than 100 ms.

Current State of Art Methods

Uncertainty quantification in state estimation

Topological Data Analysis (TDA)

TDA is a method that studies the **shape and structure of data** by identifying patterns and features that persist across multiple scales.

Topological Data Analysis (TDA) feature extraction

Model Predictions: Basic Point Estimates

Given simple dataset

Model Predictions: Basic Point Estimates

Build a model to fit the dataset

Model Predictions: Basic Point Estimates

Point Predictions: Trustworthiness Issues

What if we make prediction out of training bound ?

Enhancing Predictions with Confidence Intervals

Introducing Uncertainty Quantification (UQ)

Uncertainty Quantification (UQ) is the process of evaluating and managing the uncertainty in model predictions.

Gaussian Process Regression (GPR)

Monte Carlo (MC) Dropout

Neural Network Ensemble (NNE)

Converting LSTM to probabilistic model

Long short-term memory (LSTM):

Type of recurrent neural network (RNN), designed to overcome the limitation of traditional RNN in capturing long-term dependencies in sequential data.

Governing equations:

$$\begin{aligned} \mathbf{f}_{t} &= \sigma_{g}(\mathbf{W}_{x}^{f} x_{t} + \mathbf{W}_{h}^{f} \mathbf{h}_{\{t-1\}} + \mathbf{b}_{f}) \\ \mathbf{i}_{t} &= \sigma_{g}(\mathbf{W}_{x}^{i} x_{t} + \mathbf{W}_{h}^{i} \mathbf{h}_{\{t-1\}} + \mathbf{b}_{i}) \\ \mathbf{o}_{t} &= \sigma_{g}(\mathbf{W}_{x} x_{t} + \mathbf{W}_{h}^{o} \mathbf{h}_{\{t-1\}} + \mathbf{b}_{o}) \\ \mathbf{\tilde{c}}_{t} &= \sigma_{tanh}(\mathbf{W}_{x}^{\tilde{c}} x_{t} + \mathbf{W}_{h}^{\tilde{c}} \mathbf{h}_{\{t-1\}} + \mathbf{b}_{c}) \\ \mathbf{c}_{t} &= \mathbf{f}_{t} \circ \mathbf{c}_{\{t-1\}} + \mathbf{i}_{t} \circ \mathbf{\tilde{c}}_{t} \\ \mathbf{h}_{t} &= \mathbf{o}_{t} \circ \sigma_{h}(\mathbf{c}_{t}) \end{aligned}$$

 σ_g : sigmoid activation σ_{tanh} : tanh activation

Converting LSTM to probabilistic model

Case Study 1: Linear Chirp Signal

To model high-rate dynamic systems with well-defined frequency changes and assess the HR-SSEP's performance under controlled conditions. We will use chirp signal:

$$x(t) = \cos\left(2\pi\left(\frac{(f_1 - f_0)}{2T}t^2 + f_0t\right)\right)$$

Parameters:

- f_0 : Initial Frequency
- f_0 : Final Frequency
- T : Total Duration

<u>Goal</u>

- Evaluate how well the model handles signals outside the trained frequency range.
- Evaluate feature extraction performance when signals are out of the training range.

Case Study 1: Linear Chirp Signal

ID: In-Domain OOD: Out-Of-Domain

Case Study 2: DROPBEAR Dataset

DROPBEAR experimental testbed: The Dynamic Reproduction of Projectiles in Ballistic Environments for Advanced Research (DROPBEAR) was used to generate the experimental data.

Capabilities:

Reproduce fast boundary condition changes. Mimic rapid mass changes. Simulate the rapid dynamics typical of high-rate events.

Austin Downey, Jonathan Hong, Jacob Dodson, Michael Carroll, and James Scheppegrell, "Dataset-2dropbearacceleration-vs-roller-displacement," Dec. 2021. [Online]. Available: <u>https://github.com/High-Rate-SHM-Working-Group/Dataset-2-DROPBEAR-Acceleration-vs-Roller-Displacement</u>

Case Study 2: DROPBEAR Dataset

Case Study 2: DROPBEAR Dataset

Summary

Key Outcomes:

- Advanced State Estimation: Strong performance with various datasets.
- **Reliable Predictions**: Includes uncertainty quantification for trustworthy results.
- **Real-Time Capability**: Predictions made in under 100 ms.

Future Plans:

- **Expand Metrics**: Add more uncertainty metrics.
- **Broaden Testing**: Apply to diverse high-rate datasets.
- Enhance Functionality: Integrate anomaly detection and contextual adaptation.

Acknowledgements

- Air Force Office of Scientific Research (AFOSR).
- Defense Established Programs to Stimulate Competitive Research (DEPSCoR).
- Air Force Research Laboratory Munitions Directorate.
- National Science Foundation

Thank You!

Questions?

Results

Model Performance Metrics for random movement 7

Metric Used:		Model	MAE (mm)	TRAC	SNR _{dB}	ECE (%)	Test time (ms)
•	Mean absolute error (MAE)	GPR	6.300	0.991	20.623	16.093	0.665
•	Time response assurance criterion	NN	6.620	0.992	6.460	-	1.283
	(TRAC) Signal-to-noise ratio (SNR _{dB})	NNE	6.138	0.993	21.291	18.785	2.963
•	Expected confidence error (ECE)	MC Dropout	8.297	0.991	20.496	5.771	0.523
•	Test time: Computation time from	LSTM	6.280	0.995	6.387	-	1.454
	sample.	LSTM-MC	6.895	0.996	23.106	26.936	0.454
	1	LSTM-NNE	4.803	0.997	24.494	15.444	2.183

LSTM-NNE

