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Background

High-Rate Dynamic Systems

• Systems experiencing dynamic events with amplitudes higher than 100 𝑔𝑛 over a duration of 

less than 100 ms.
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Current State of Art Methods
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Uncertainty quantification in state estimation 
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Benefits of UQ

• Improve Model Reliability

• Risk-Based Decision Making

• Proxy for Estimation Error



Topological Data Analysis (TDA) 

TDA is a method that studies the shape and structure of data by identifying patterns and features that persist across 

multiple scales. 
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Topological Data Analysis (TDA) feature extraction
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Model Predictions: Basic Point Estimates
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Given simple dataset



Model Predictions: Basic Point Estimates
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Build a model to fit the dataset



Model Predictions: Basic Point Estimates
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Point Predictions: Trustworthiness Issues
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Introducing Uncertainty Quantification (UQ)
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UQ models:

- Gaussian process 

regression

- Monte Carlo (MC) 

dropout

- Neural network 

ensemble (NNE)

Model Calibration

• Verification

• Validation

Model Prediction

• Identify

• Propagate

• Analysis

• Control

Uncertainty Management

Uncertainty Quantification (UQ) is the process of evaluating and managing the uncertainty in model predictions.
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Gaussian Process Regression (GPR)
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𝑇~ 𝑁 0, 𝑲

𝑲: Kernel on input features 𝐱
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Monte Carlo (MC) Dropout
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Neural Network Ensemble (NNE)
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Converting LSTM to probabilistic model

Long short-term memory (LSTM):

Type of recurrent neural network (RNN), designed 

to overcome the limitation of traditional RNN in 

capturing long-term dependencies in sequential 

data.

Governing equations:

16

𝜎 Tanh𝜎 𝜎

⨀

⨀

⨁
Tanh

⨀

𝑥𝑡

𝐜 𝑡−1 𝐜𝑡

𝐡𝑡

𝐟𝑡 = 𝜎𝑔(𝐖𝑥
𝑓

 𝑥𝑡  +  𝐖ℎ
𝑓

 𝐡 𝑡−1  +  𝐛𝑓)

𝐢𝑡 = 𝜎𝑔(𝐖𝑥
𝑖 𝑥𝑡  + 𝐖ℎ

𝑖 𝐡 𝑡−1  +  𝐛𝑖)

𝐨𝑡 = 𝜎𝑔(𝐖𝑥𝑥𝑡  + 𝐖ℎ
𝑜𝐡 𝑡−1  +  𝐛𝑜)

෤𝐜𝑡 = 𝜎𝑡𝑎𝑛ℎ(𝐖𝑥
ǁ𝑐𝑥𝑡  + 𝐖ℎ

ǁ𝑐𝐡 𝑡−1  +  𝐛𝑐)

𝐜𝑡 = 𝐟𝑡 ∘  𝐜 𝑡−1  + 𝐢𝑡 ∘ ෤𝐜𝑡

𝐡𝑡 = 𝐨𝑡 ∘ 𝜎ℎ(𝐜𝑡)

Unfolded basic LSTM

𝜎𝑔: sigmoid activation

𝜎𝑡𝑎𝑛ℎ: tanh activation

𝐡0 LSTM

𝑥0

𝐡1 ⋯ 𝐡𝑡−1 LSTM

𝑥𝑡

𝐡𝑡

𝑠𝑡



Converting LSTM to probabilistic model
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Case Study 1: Linear Chirp Signal

𝑥(𝑡)  = cos 2𝜋
𝑓1 − 𝑓0

2𝑇
𝑡2 + 𝑓0𝑡
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To model high-rate dynamic systems with well-defined frequency changes and assess the HR-SSEP's performance 

under controlled conditions. We will use chirp signal:
Parameters:

▪ 𝑓0 : Initial Frequency

▪ 𝑓0 ​: Final Frequency

▪ T  : Total Duration

Goal

• Evaluate how well the model handles signals outside the trained frequency range.

• Evaluate feature extraction performance when signals are out of the training range.

Feature extraction parameter

H1 window size = 0.13 s

H0 window size = 0.1   s

𝜏 = 0.008 s

Training Signal: 

10 Hz to 15 Hz

Testing Signal:   

5 Hz to 20 Hz

Generate
Training Signal: 

10 Hz to 15 Hz



Case Study 1: Linear Chirp Signal

Training Signal

Frequency Range: 10 Hz to 15 Hz

Testing Signal

Frequency Range: 5 Hz to 20 Hz
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Case Study 1: Linear Chirp Signal
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Case Study 2: DROPBEAR Dataset

DROPBEAR experimental testbed:

The Dynamic Reproduction of Projectiles in Ballistic 

Environments for Advanced Research (DROPBEAR) 

was used to generate the experimental data.

Capabilities:

Reproduce fast boundary condition changes.

Mimic rapid mass changes.

Simulate the rapid dynamics typical of high-rate events.
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Austin Downey, Jonathan Hong, Jacob Dodson, Michael Carroll, and James Scheppegrell, “Dataset-2-
dropbearacceleration-vs-roller-displacement,” Dec. 2021. [Online]. Available: https://github.com/High-Rate-SHM-
Working-Group/Dataset-2-DROPBEAR-Acceleration-vs-Roller-Displacement

Generate

https://github.com/High-Rate-SHM-Working-Group/Dataset-2-DROPBEAR-Acceleration-vs-Roller-Displacement
https://github.com/High-Rate-SHM-Working-Group/Dataset-2-DROPBEAR-Acceleration-vs-Roller-Displacement


Case Study 2: DROPBEAR Dataset
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Training and validation Testing
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Summary

Key Outcomes:

• Advanced State Estimation: Strong performance with various datasets.

• Reliable Predictions: Includes uncertainty quantification for trustworthy results.

• Real-Time Capability: Predictions made in under 100 ms.

Future Plans:

• Expand Metrics: Add more uncertainty metrics.

• Broaden Testing: Apply to diverse high-rate datasets.

• Enhance Functionality: Integrate anomaly detection and contextual adaptation.
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Thank You!
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Questions?



Backup
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Results
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Model MAE (mm) TRAC 𝑺𝑵𝑹𝒅𝑩 ECE (%) Test time (ms)

GPR 6.300 0.991 20.623 16.093 0.665

NN 6.620 0.992 6.460 - 1.283

NNE 6.138 0.993 21.291 18.785 2.963

MC Dropout 8.297 0.991 20.496 5.771 0.523

LSTM 6.280 0.995 6.387 - 1.454

LSTM-MC 6.895 0.996 23.106 26.936 0.454

LSTM-NNE 4.803 0.997 24.494 15.444 2.183

Model Performance Metrics for random movement 7 

Metric Used:

• Mean absolute error (MAE)

• Time response assurance criterion 

(TRAC)

• Signal-to-noise ratio (𝑆𝑁𝑅𝑑𝐵)

• Expected confidence error (ECE)

• Test time: Computation time from 

pipeline to prediction for each 

sample.

LSTM-NNE
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