Topological Data Analysis for Real-Time Extraction of Time Series Features

Arman Razmara Shooli Graduate Research Assistant

Principal Investigators:

Dr. Simon Laflamme Dr. Chao Hu

Team Members:

Yang Kang Chua Daniel A. Salazar

IOWA STATE UNIVERSITY

Department of Civil, Construction and Environmental Engineering

Introduction

High-Rate Structural Health Monitoring (HRSHM)

What is SHM?

- Process of implementing a damage identification strategy
- Includes:
 - 1) observation
 - 2) feature extraction
 - 3) statistical analysis
 - 4) decisions

Why SHM?

- Condition-based maintenance
 - Automatic damage detection vs. timely inspections
- Useful?
 - Early warnings for proactive actions
- Any tradeoffs?
 - Requires sophisticated hardware and software

Introduction

High-Rate Structural Health Monitoring (HRSHM)

Definition

- 10 kg TNT takes 0.3 to 100 ms to travel over 1 to 40 m distance
- 100 µs at Mach 5 corresponds to 150 mm. 1.5 MHz sampling rate gives a 1 mm resolution

Arman Razmara Shooli

Introduction

High-Rate Structural Health Monitoring (HRSHM)

Definition

- Systems experiencing high-rate dynamics
 - Accelerations higher than $100 g_n (g_n = 9.81 \text{ m/s}^2)$ in less than 1 ms
- Characterized by
 - Large uncertainties in external loading
 - High levels of nonstationarity and heavy disturbance
 - Generations of unmodeled dynamics from changes in mechanical configuration

Hong, Jonathan, et al. "Variable input observer for nonstationary high-rate dynamic systems." Neural computing and applications 32 (2020): 5015-5026.

Research Approach

Strategy:

RNN: recurrent neural network HRSHM: high-rate structural health monitoring

Arman Razmara Shooli

Motivation & Objectives

Goals:

- Universal framework for high-rate
- Real-time learning sequential learning
- Easy-to-train network

Challenges:

- Very limited training data
- Nonstationary environment
- Sub-millisecond computations

HRSHM – Early Work

Control of induction motors

Technique	Speed for one update	Reference	
extended Kalman filter	86 µs	Xu et al. 2007	
adaptive sliding observer	86 µs	Xu et al. 2007	
Luenberger observer	5 µs	Zhang et al. 2009	
sliding mode observer	5 µs	Zhang et al. 2009	
extended Kalman filter	100 µs	Zhang et al. 2009	

Adaptive observers

Technique	Speed for one update	Reference
exponential parameter estimation	3 s	Khayati et al. 2013
modification of modulating functions	8 s	Byrski et al. 2014

Zhang, Yongchang, et al. "A comparative study of Luenberger observer, sliding mode observer and extended Kalman filter for sensorless vector control of induction motor drives." 2009 IEEE Energy Conversion Congress and Exposition. IEEE, 2009.

Xu, Z., F. Rahman, and Dianguo Xu. "Comparative study of an adaptive sliding observer and an ekf for speed sensor-less dtc ipm synchronous motor drives." 2007 IEEE Power Electronics Specialists Conference. IEEE, 2007.

Khayati, Karim, and Jiang Zhu. "Adaptive observer for a large class of nonlinear systems with exponential convergence of parameter estimation." 2013 International Conference on Control, Decision and Information Technologies (CoDIT). IEEE, 2013.

Byrski, Witold, and Jędrzej Byrski. "On-line fast identification method and exact state observer for adaptive control of continuous system." *Proceeding of the 11th World Congress on Intelligent Control and Automation*. IEEE, 2014.

Motivation & Objectives

Fast Model Reference Adaptive System

• Dynamic Reproduction of Projectile Ballistic Environments for Advanced Research (DROPBEAR)

Tests	Pin position	Frequency (Hz)	Estimated frequency (Hz)	Convergence time (ms)
1-5	© 50 mm M	17.7	17.67	780
6-10	0	21.0	21.00	400
11-15	о 150 mmМ	25.0	24.99	160
16-20		31.0	31.01	100

Data Pre-Processing

Embedding Theorem

Key Remarks:

- 1-to-1 mapping exists between the state vector **s** and delay vector **x**
- The delay vector **x** preserves the essential dynamics
- Minimal representation can be obtained using the essential dynamics as inputs

Previous Research

Variable Input Observer (VIO)

Overall:

• Predicting with no pre-training possible

Challenges:

- Relatively long computation time
- No learning occurred

Hong, Jonathan, et al. "Variable input observer for nonstationary high-rate dynamic systems." Neural computing and applications 32 (2020): 5015-5026.

Arman Razmara Shooli

Previous Research

Ensemble of RNNs for Time Series Prediction

predicted time series

weighted-sum ensemble

regime-aware **RNNs**

measured time series

Key Features

- Each RNN built with different input vector (multi-rate sampling)
- Short-sequence LSTM architectures in parallel
- RNNs are trained on a single event (different sensor)
- Transfer learning to extrapolate
- Weighted-sum or "attention" layer assembles individual estimations

Hong, Jonathan, et al. "Variable input observer for nonstationary high-rate dynamic systems." Neural computing and applications 32 (2020): 5015-5026.

Arman Razmara Shooli

Introduction:

- Characteristics of data that do not depend on certain details of the representation
- Infer relevant topological features from these spaces
- Using these features for further processing (data classification)
- TDA has been never used for time series prediction

Challenges:

- No direct access to topological information
- Need for topological construction (simplicial complexes)
- Distinguish topological signal from noise
- Find a way to incorporate TDA features within neural network
- Find a fast way (shortcut) to implement TDA features.

Simplicial Complexes

- A generalization of a graph
- A 0-simplicial complex is a set of points, a 1-simplicial complex is a graph
- An n-simplicial complex contains up to n-dimensional simplices

A simplicial complex

Not a simplicial complex

Simplicial Complexes

- It is not obvious what the correct radius is for the construction of our simplicial complex
- Persistent homology solved this problem by measuring topological features which persist while growing radii
- Persistence diagram keeps track of the increase/decrease in each Betti number, representing the birth and death of features as radii increase.
- Informally, the kth Betti number refers to the number of k-dimensional holes on a topological surface

Persistence Diagram

- Record the changes when increasing the threshold into a plot known as the persistence diagram
- Each point represents a hole in the point cloud

- TDA features on a physical context
- Application: cantilever beam with a fast-moving boundary condition
- The meaning of TDA features for a single-harmonic time series
- Suggested optimal embedding dimension is 2
- Containing information about zero-dimensional hole (H_0) and one-dimensional hole (H_1)
- H₁ relates to the frequency of harmonic signals
- H_0 does not have any physical meaning

Challenges:

- The embedding theorem is applicable only to stationary systems
- Our dynamics are highly non-stationary

Strategy: Windowing

- Applying a sliding window over the dataset to extract local values for H_1
- Maximum allowable time delay $(\tau) = \frac{0.25}{f_{max}}$ Size of windowing $= \tau + \frac{1}{f_{min}}$ (Ensure point cloud will form a complete loop)

Case Study #1: Synthetic Cosine Data

- $x(t) = Cos(2\pi f(t)t)$
- Moving window size: $\tau + \frac{1}{f_{min}} = 1 + 0.03 = 1.03$
- Time delay = 0.03 s

Case Study #2: Experimental Data from DROPBEAR Testbed

Challenges:

- Computation time (far beyond the submillisecond requirement)
- Rely on physical knowledge to construct window size and time delay

Goals:

- Extracting TDA features faster
- For H₁, the ratio of the minor axis to the major axis of an ellipse determines the death time of point cloud

Fast TDA

- In each window, an ellipse is fitted through least square optimization
- Plot the ratio of the minor axis to the major axis as an indication of the persistence of the ellipse

Fast TDA

Case Study #1: Synthetic Data

•

Arman Razmara Shooli

Fast TDA

Case Study #2: Experimental Data from DROPBEAR Testbed

• Fast TDA

Arman Razmara Shooli

Recap on Previous Research

Ensemble of RNNs for Time Series Prediction

predicted time series

weighted-sum ensemble

regime-aware **RNNs**

measured time series

Key Features:

- Each RNN built with different input vector (multi-rate sampling)
- Short-sequence LSTM architectures in parallel
- RNNs are trained on a single event (different sensor)
- Transfer learning to extrapolate
- Weighted-sum or "attention" layer assembles individual estimations

Hong, Jonathan, et al. "Variable input observer for nonstationary high-rate dynamic systems." Neural computing and applications 32 (2020): 5015-5026.

Arman Razmara Shooli

Future Research: Topology-Aware RNN Ensemble

 $\hat{y}(t) = \sum_{i=1}^{r} w_j \hat{y}_j (t + \tau_j)$

Approach 1: Topological Input Features

Predicted time series

Weighted-sum ensemble

Regime-aware **RNNs**

Key Features:

- TDA for signal processing to extract topological features
- Mapping from topological features to time series
- Potential extension to state (e.g., damage) estimation

Future Research: Topology-Aware RNN Ensemble

Approach 2: Topology-Aware Model Weighting

Key Features:

- TDA for dynamic state classification to weigh individual estimates in an ensemble
- Maintain the mapping from time series to time series
- Weighted-sum or "attention" layer assembles individual estimations

Summary

- Key Outcomes:
 - Linked TDA features to physics for a non-stationary single-harmonic
 - Sequential sub-sampling used for non-stationary applications
 - Demonstrated the new concept: Fast-TDA
- Upcoming Work/Challenges:
 - How to extend TDA-to-physics to more complex problems, including multiple dominating frequencies.
 - How to select on-the-spot time delays to form point clouds
 - Need to understand the relationship between sub-sampled persistence and degrees of nonlinearities
 - Adapt TDA to the sub-millisecond realm (further develop Fast-TDA)

Acknowledgements

- Air Force Office of Scientific Research (AFOSR)
- Defense Established Programs to Stimulate Competitive Research (DEPSCoR)
- Air Force Research Laboratory Munitions Directorate

Questions

Questions?

Arman Razmara Shooli