CSCE 520: Database System Design - 1. Course number and name: CSCE 520: Database System Design - 2. Credit: 3-hrs; Contact: 3 lectures of 50 minutes each or 2 lectures of 75 minutes each per week - 3. Instructor: Spring 2011: Csilla Farkas - 4. Text book: Jeffrey D. Ullman and Jeniffer Widom, *A First Course in Database Systems*, 3rd edition, Prentice Hall, 2007, ISBN: 013600637X Rajshekhar. Sunderraman, *Oracle 9i Programming, A Primer*, Addison Wesley Longman, Inc., 2003, ISBN: 0-321-19498-5. - 5. Specific course information - a. Catalog description: Database management systems; database design and implementation; security, integrity, and privacy. - b. Prerequisites: CSCE 240 or GEOG 563 - c. Required in CIS curriculum, elective in CS and CE curricula - 6. Specific goals for the course - a. Specific outcomes of instruction: - 1. Describe the major components of a database management system and state their functions and purpose. - 2. Develop a data model for a database application using an appropriate modeling tool such as ER diagrams. - 3. Use the concepts of data normalization to develop well-designed database applications. - 4. Implement a database application using an appropriate relational DBMS. - 5. Use SQL implement, manage, and query a database. - 6. Describe major operational issues associated with database applications, including transaction management, security, and integrity. - b. Relation of course outcomes to Student Outcomes: CE: see page 2; CS & CIS: see page 3 - 7. Topics covered and approximate weight (14 weeks, 3 hours/week, 42 hours total) - 1. Introduction; - 2. Relational database management systems: data definition, data manipulation using SQL, system catalog, views, database languages; - 3. Logical database design: entity-relations hip models, normal forms, normalization; - 4. Relational data model: formal definition, integrity rules, relational algebra and calculus; | 5. | Operational issues: transaction management, recovery and concurrency, security and integrity, database products. | |----|--| ## **Computer Engineering** Relation of Course Outcomes to EAC Student Outcomes* | | Student Outcomes | | | | | | | | | | | | |--|------------------|--|--|--|---|--|---|---|---|------|--|---| | Course Outcomes
(CE) | of mathe matics | design
and
condu
ct
experi
ments, | comp
onent,
or
proces
s to | (d) functi on on multid iscipli nary teams | identify,
formu
late,
and
solve
engine | profes
sional
and
ethical
respon | (g)
comm
unicat
e
effecti
vely | (h) the
broad
educat
ion to
unders
tand
the
impac
t of
engine
ering
soluti | nition
of the
need
for,
and an
ability
to
engag
e in
life- | edge | ques,
skills,
and
moder
n
engine
ering | (CE) demo nstrate knowl edge of discret e mathe matics [CE] | | Criteria | a | b | С | d | e | f | g | h | i | j | k | CE | | Describe the major components of a database management system and state their functions and purpose. Develop a data model for a database application using an appropriate modeling | 3 | | 3 | | 2 | | | 2 | 1 | 2 | 1 | 2 | | tool such as ER diagrams. 3. Use the concepts of data normalization to develop well-designed database applications. | 3 | | 3 | | 2 | | | 2 | | | 2 | 2 | | 4. Implement a database application using an appropriate relational DBMS. | | 3 | | | 3 | | | | | | 3 | | | 5. Use SQL to implement, manage, and query a database. | 2 | 3 | | | 3 | | | | | | 3 | | | 6. Describe major | | | | | | | | | |--------------------------|---|---|---|---|---|---|---|--| | operational issues | | | | | | | | | | associated with database | 2 | 2 | 2 | 2 | 1 | 2 | 2 | | | applications, including | 3 | | 2 | | 1 | 2 | 2 | | | transaction management, | | | | | | | | | | security, and integrity. | | | | | | | | | ^{*} 3 = major contributor, 2 = moderate contributor, 1 = minor contributor; blank if not related ## **Computer Science & Computer Information Systems** Relation of Course Outcomes to CAC Student Outcomes* | | Student Outcomes | | | | | | | | | | | | |--|------------------|--|--|--|--|--|---|--|---|--|---|--| | | | All | | | | | | | | | | CIS | | Course Outcomes
(CS & CIS) | knowl
edge | proble m, and identify and define the computing requirements | imple
ment,
and
evalua
te a
compu
ter-
based
syste | on effecti vely on teams to accom plish a comm on goal | g of
profes
sional,
ethical
, legal, | comm
unicat
e
effecti
vely
with a
range
of
audien
ces | local
and
global
impact
of
compu
ting
on | nition
of the
need
for
contin
uing
profes
sional
develo
pment | ques,
skills,
and
tools
necess
ary
for
comp
uting
practi
ce | mathe matica l found ations, algorit hmic princi ples, and CS theory | apply
design
and
develo
pment
princi
ples | rt the infor matio n syste ms enviro nment | | Criteria | a | b | c | d | e | f | g | h | i | j | k | j | | 1. Describe the major components of a database management system and state their functions and purpose. | 3 | 2 | 3 | | | | 2 | 1 | 2 | | 2 | 2 | | 2. Develop a data model for a database application using an appropriate modeling tool such as ER diagrams. | | 3 | 3 | | | | | | | 2 | 3 | | | 3. Use the concepts of data normalization to develop well-designed database applications. | 3 | 3 | 3 | | | | | | | 2 | 3 | | | 4. Implement a database application using an appropriate relational DBMS. | | 3 | 3 | | | | | | 3 | | | | | 5. Use SQL to implement, manage, and query a database. | 2 | 3 | 3 | | | | | | 3 | | | | | 6. Describe major | | | | | | | | |--------------------------|---|-------|---|---|---|--|---| | operational issues | | | | | | | | | associated with database | 2 |
2 | 2 | 2 | 2 | | 1 | | applications, including | 3 |
3 | 2 | 2 | 2 | | 2 | | transaction management, | | | | | | | | | security, and integrity. | | | | | | | | ^{* 3 =} major contributor, 2 = moderate contributor, 1 = minor contributor; blank if not related