CSCE 215: Unix/Linux Fundamentals 1. Course number and name: CSCE 215: Unix/Linux Fundamentals 2. Credit: 1-hrs; Contact: 2 lectures & 2 labs of 50 minutes each per week for 5 weeks 3. Instructor: Fall 2010: Pat O'Keefe Faculty Coordinator: Manton Matthews - 4. Text book: Sumitabha Das, *Your UNIX: The Ultimate Guide*, 2nd Ed. McGraw Hill, 2005, ISBN: 0072520426. - 5. Specific course information - a. Catalog description: UNIX operating system, user-level system commands, and programming tools. UNIX scripting languages. - b. Prerequisites: CSCE 145 - c. Required in All curricula - 6. Specific goals for the course - a. Specific outcomes of instruction: - 1. Use the user-level tools available in the UNIX operating system to run and build software and programs. - 2. Describe and traverse the UNIX file system. - 3. Describe and use UNIX processes, pipes, signals, and filters. - 4. Use scripting languages such as the UNIX shell and Perl. - 5. Write and use regular expressions and grammars and tools based on them such as grep and Sed to search and edit text; - b. Relation of course outcomes to Student Outcomes: CE: see page 2; CS & CIS: see page 3 - 7. Topics covered and approximate weight (5 weeks, 3.5 hours/week, 17.5 hours total) - 1. Introduction: history and philosophy of UNIX, GUI; overview of UNIX commands - 2. The UNIX file system and shell Chapter 2, Combinational Systems - 3. The shell and shell commands - 4. Processes, filters, pipes, and signals - 5. Regular expressions; Sed and grep - 6. Shell scripting - 7. Programming tools; make, cvs, tar, RPM, autoconfig, and gdb ## **Computer Engineering** Relation of Course Outcomes to EAC Student Outcomes* | | | | | | Stu | dent (| Outco | mes | | | | | |---|---------------------|--|--|--|--------------------------------|--|---|---|---|---|--|--------------------| | Course Outcomes
(CE) | edge
of
mathe | design
and
condu
ct
experi
ments,
 | comp
onent,
or
proces
s to
meet | (d) functi on on multid iscipli nary teams | (e) identif y, formu late, and | (f) an
unders
tandin
g of
profes
sional
and
ethical
respon | (g)
comm
unicat
e
effecti
vely | (h) the
broad
educat
ion to
unders
tand
the | nition of the need for, and an ability to engag e in life- long | | ques,
skills,
and
moder
n
engine
ering | of
discret
e | | Criteria | a | b | С | d | e | f | g | h | i | j | k | CE | | 1. Use the user-level tools available in the UNIX operating system to run and build software and programs. | 1 | 2 | 3 | | 3 | 1 | 2 | 1 | 2 | 1 | 3 | 1 | | 2. Describe and traverse the UNIX file system. | 1 | 1 | 2 | | 2 | 2 | 1 | 1 | 1 | 1 | 3 | 1 | | 3. Describe and use UNIX processes, pipes, signals, and filters. | 2 | 3 | 3 | | 3 | 2 | 2 | 1 | 1 | 1 | 3 | 2 | | 4. Use scripting languages such as the UNIX shell and Perl. | 2 | 3 | 3 | | 3 | 2 | 2 | 1 | 1 | 1 | 3 | 3 | | 5. Write and use regular expressions and grammars and tools based on them such as grep and Sed to search and edit text. | 3 | 3 | 3 | | 3 | 2 | 2 | 1 | 1 | 1 | 3 | 3 | ^{* 3 =} major contributor, 2 = moderate contributor, 1 = minor contributor; blank if not related ## **Computer Science & Computer Information Systems** Relation of Course Outcomes to CAC Student Outcomes* | | Student Outcomes | | | | | | | | | | | | |---|---------------------|---|---|---|--|---|---|------------------------|---|-----------------|-----|--------------------------| | | All | | | | | | | | CS | | CIS | | | | eage
of
compu | y and
define
the
compu
ting | imple ment, and evalua te a compu ter-based syste | effecti
vely
on
teams
to
accom | profes
sional,
ethical
, legal, | comm
unicat
e
effecti
vely
with a
range | local
and
global
impact
of
compu
ting
on | of the need for contin | ques,
skills,
and
tools
necess
ary
for
comp
uting | mathe
matica | (K) | rt the
infor
matio | | Criteria | a | b | С | d | e | f | g | h | i | j | k | j | | 1. Use the user-level tools available in the UNIX operating system to run and build software and programs. | 1 | 2 | 3 | | 3 | 1 | 2 | 2 | 2 | 1 | 3 | 1 | | 2. Describe and traverse the UNIX file system. | 1 | 1 | 2 | | 2 | 2 | 1 | 1 | 1 | 1 | 3 | 1 | | 3. Describe and use UNIX processes, pipes, signals, and filters. | 2 | 3 | 3 | | 3 | 2 | 2 | 1 | 1 | 1 | 3 | 2 | | 4. Use scripting languages such as the UNIX shell and Perl. | 2 | 3 | 3 | | 3 | 2 | 2 | 1 | 1 | 1 | 3 | 3 | | 5. Write and use regular expressions and grammars and tools based on them such as grep and Sed to search and edit text. | 3 | 3 | 3 | | 3 | 2 | 2 | 1 | 1 | 1 | 3 | 3 | ^{* 3 =} major contributor, 2 = moderate contributor, 1 = minor contributor; blank if not related