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ABSTRACT

Circadian rhythms are a foundational aspect of biol-
ogy. These rhythms are found at the molecular level
in every cell of every living organism and they play
a fundamental role in homeostasis and a variety of
physiological processes. As a result, biomedical re-
search of circadian rhythms continues to expand at
a rapid pace. To support this research, CircadiOmics
(http://circadiomics.igb.uci.edu/) is the largest anno-
tated repository and analytic web server for high-
throughput omic (e.g. transcriptomic, metabolomic,
proteomic) circadian time series experimental data.
CircadiOmics contains over 290 experiments and
over 100 million individual measurements, across
>20 unique tissues/organs, and 11 different species.
Users are able to visualize and mine these datasets
by deriving and comparing periodicity statistics for
oscillating molecular species including: period, am-
plitude, phase, P-value and q-value. These statistics
are obtained from BIO CYCLE and JTK CYCLE and
are intuitively aggregated and displayed for compari-
son. CircadiOmics is the most up-to-date and cutting-
edge web portal for searching and analyzing circa-
dian omic data and is used by researchers around
the world.

GRAPHICAL ABSTRACT

INTRODUCTION

Circadian rhythms are found in plants, animals, fungi and
cyanobacteria and are fundamental to biology (1–4). They
date back to the first cyanobacteria and the origin of life
on earth and, since then, through ∼2 trillion revolutions of
the earth on its axis, they have been deeply etched in the
molecular machinery of all cells. Disruptions of circadian
rhythms have been linked to health problems such as can-
cer, diabetes, obesity, and premature aging (2,5–12). The ad-
vance of modern high-throughput technologies has made
it possible to investigate circadian rhythms at the molecu-
lar level. Measuring the concentrations of molecular species
across time has shown that circadian oscillations are perva-
sive in all living cells (4,13,14). Circadian oscillations are
generated by feedback loops which are regulated in part
by the ‘core clock’ (15). The core clock is a classical in-
hibitory transcription-translation feedback loop which is
highly conserved from animals to plants. While the core
clock comprises a dozen genes including CLOCK, BMAL1,
PER1, PER2, CRY1 and CRY2, in any given experiment
∼10% of all transcripts and metabolites display circadian
oscillations (16–22). However, the complement of molec-
ular species exhibiting circadian oscillations greatly varies
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with genetic, epigenetic, tissue/organ, health, age, and en-
vironmental conditions. This circadian reprogramming is a
major target of active investigations aimed at understand-
ing how environmental conditions, such as drug treatments
or diets, affect circadian oscillations and how oscillations
in different cells/tissues are coordinated and interact with
each other (19,23–30). The large repository of omic data
available via CircadiOmics, serves as an invaluable resource
to analyze the complexity of circadian mechanisms and
their downstream implications. The CircadiOmics interface
is especially advantageous and unique because it allows
users to easily perform comparative analyses and aggre-
gated inferences about circadian rhythms at the molecular
level across species, tissues/organs, and genetic, epigenetic
and environmental conditions.

MATERIALS AND METHODS

Datasets

CircadiOmics currently contains over 290 omic datasets
with over 100 million individual measurements, across >20
unique tissues/organs, and 11 different species. For sim-
plicity we group the unique tissue/organ types into 13 cat-
egories: liver, brain, digestive, skin, serum, muscle, adi-
pose, glands, cells, kidney, heart, eye and other. Figure 1B
shows a breakdown of the # of datasets contained within
the repository for each tissue/organ category. The species
currently represented in CircadiOmics include: Aedes ae-
gypti, Anopheles gambiae, Arabidopsis thaliana, Danio re-
rio, Drosophila melanogaster, Homo sapiens, Mus muscu-
lus, Neurospora crassa, Papio anubis, Rattus norvegicus, and
Rhesus macaques. Figure 1A shows a breakdown of the
number of datasets per species. As such, CircadiOmics is
the most extensive, comprehensive, and current repository
for circadian data. For comparison purposes, Table 1 shows
a breakdown of the number and types of datasets currently
available in the most prominent circadian data reposito-
ries (31–33) and [Li, D., Yang, R., Miao, Z., and Tao, W.
(2010) BioClock: a web server and database aimed for in-
terpreting circadian rhythm. Intelligent Systems for Molec-
ular Biology 2010 meeting]. The majority of datasets in
CircadiOmics are collected from the species Mus musculus
(mouse) and Papio anubis (baboon) and from liver and brain
tissues. In addition to a wide variety of species and tissues,
CircadiOmics also has a diverse set of experimental condi-
tions represented. Some of the experimental conditions rep-
resented include: knock-downs, knock-outs, diet changes,
exercise, and drug treatments. In addition, CircadiOmics
uniquely contains data from different omic experiments, in-
cluding transcriptome, metabolome, proteome, and acety-
lome experiments. Figure 1 summarizes the number of avail-
able datasets by detailed categories. The full table summa-
rizing all of the datasets is available on the CircadiOmics
web portal with a short explanation of the dataset, a brief
description of the experimental protocol, the citation, the
GEO accession number, and other summary information.

Dataset collection

The datasets in CircadiOmics are collected from research
collaborations, automated discovery, and manual discov-

ery. The two main automated approaches used to identify
newly available circadian dataset are a web crawler devel-
oped in-house and the publicly available web service Pub-
Crawler (34). The web crawler developed in-house uses the
Python packages scholarly and geotools to search the liter-
ature to discover new circadian omic studies and their af-
filiated datasets. To find new datasets, the crawler performs
keyword searches on published abstracts, extracts various
features from the published articles, and then uses logistic
regression on the extracted features to classify whether or
not a dataset is a good candidate for inclusion in Circa-
diOmics. The datasets discovered by the crawler are then
manually vetted and processed to be included into Circa-
diOmics. Using this crawler in tandem with PubCrawler,
which sends a daily email containing a list of possible publi-
cations of interest, we are able to keep CircadiOmics current
by continuously adding the latest cutting-edge research in
circadian rhythms to the repository. Additionally, the Circa-
diOmics team and collaborating biologists include datasets
from collaborative research projects and perform periodic
manual searches on recent publications to further comple-
ment the data obtained through the automated discovery
tools.

RESULTS

Features

The main focus of CircadiOmics is the search function,
which allows users to compare and visualize the oscilla-
tion trends of molecular species. The user can select a sin-
gle dataset, or multiple datasets, from within the reposi-
tory and search for any molecular species. CircadiOmics
allows for the overlay of multiple searches together to en-
able comparative studies and normalizes the output for easy
visual comparison. For each query, a table of periodicity
statistics including: period, amplitude, phase, P-value and
q-value is displayed. These statistics are calculated using
BIO CYCLE and JTK CYCLE (35,36). Molecular species
are determined to have circadian oscillations by using P-
values and accompanying q-values at a user selected thresh-
old. In addition to selecting whether to view statistics from
BIO CYCLE or JTK CYCLE, users can also filter datasets
based on species, tissue/organ and experimental conditions.

In addition to the search functionality, to assist with
the analysis of circadian experiments we have created the
BIO CYCLE web server: http://circadiomics.igb.uci.edu/
biocycle. The web server runs the latest version of the
BIO CYCLE software on user-uploaded omic time-series
datasets and provides the user with easy-to-use analysis
tools which include: histograms of periods, phases, ampli-
tudes, and offsets, querying of molecular species based on
a user-selected P-value or q-value cutoff, visualization of
molecular concentrations across time, and analysis at 24, 12
and 8 h periods. To use the web server, users must upload a
file containing the measurements related to the concentra-
tions of molecular species across time points (e.g. transcript
levels measured every 4 h). Each row must contain the ID of
the molecular species, followed by the concentration mea-
surement at each time point. Each column corresponds to a
different time point or replicate. After the file is uploaded,
the server will run BIO CYCLE on the uploaded file for
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Figure 1. Breakdown of datasets by species, tissue, experimental conditions and omic categories.

Table 1. Comparison of CircadiOmics with other circadian web servers

Source Datasets Tissues Species

CircadiOmics 299 25 11
CircaDB 43 15 2
BIOCLOCK 2 2 2
CirGRDB 99 <20 2

three separate period ranges: 20 through 28 h, 10 through
14 h and 7 through 9 h. A separate deep neural network
(DNN) is trained for each set of timepoints and for each
period range. If the DNNs are already trained, then the re-
sults should be ready within about 1 min. If the DNNs are
not trained, BIO CYCLE will automatically train them and
the results will be ready within about 2 min. The user can
then visualize the results using various drop-down menus to
select the period of interest and P-value and q-value cutoffs.
As shown in Figure 2, given the selected period to investi-
gate, and a P-value or q-value threshold, the web server will
produce histograms of periods, lags, amplitudes and offsets.

Another feature provided by CircadiOmics is the The
Metabolic Atlas web portal. The Metabolic Atlas web por-
tal (http://circadiomics.ics.uci.edu/metabolicatlas), allows
researchers to generate and visualize interactive metabolic
networks. These networks are derived from the KEGG

database and can be filtered using BIO CYCLE statistics
(37). To create a metabolic network, users start by selecting
a dataset and a particular metabolite. From there, the user
can select options to create a network. For example, one op-
tion is to display a network of all metabolites that are oscil-
lating in-phase with the selected metabolite. Another pos-
sible option is to display a network of all metabolites that
are involved in the same pathways as the selected metabo-
lite. There are six possible options for the user to select from
for the network creation. Once the network is displayed, the
user can choose to filter out edges based on BIO CYCLE
statistics.

Improvements

Since its last publication, CircadiOmics has undergone sub-
stantial improvements including a significant increase in the
number of datasets and the diversity of datasets available to
its users. The number of available queryable datasets has in-
creased from 227 to over 290, and the number of species and
experimental conditions included in the web server has also
increased. In addition to the significant increase in avail-
able data, the latest version of CircadiOmics and the corre-
sponding automated data discovery pipeline have received
several improvements. To optimize the automated dataset
discovery process, we have started utilizing open source
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Figure 2. The BIO CYCLE web server interface.

web-crawlers in addition to our web crawler developed in-
house to make sure we are capturing as many relevant
datasets as possible, and we have improved our in-house
web crawler by broadening the keyword searches performed
on published abstracts to allow us to discover more species
and tissue types that had not previously been represented
in CircadiOmics. This improvement to the web crawler is
what allowed us to find circadian experiments performed
on Drosophila melanogaster, Danio rerio, and Neurospora
crassa, species not previously included in CircadiOmics.
In addition, the latest version of BIO CYCLE, which has
undergone significant improvement, has been made avail-
able via the CircadiOmics web portal. The improvements
to BIO CYCLE include: implementation in Python to take
advantage of state-of-the-art deep learning software, abil-
ity to handle missing timepoints, improved amplitude es-
timation, the addition of offset estimation, and modeling
real-world replicated experimental data to produce more re-
alistic p-values. The previous version of BIO CYCLE was
implemented in R, which does not have convenient access
to deep learning libraries that allow users to utilize Graph-
ics Processing Units (GPUs) to increase the speed of train-
ing and testing DNNs. In the previous version, we were
restricted to training on slower Central Processing Units
(CPUs). As a result, we only trained a small three-layer net-
work with 100 hidden units per layer. Since the new ver-
sion of BIO CYCLE is implemented in Python, we take
advantage of the PyTorch deep learning library to train

significantly larger DNNs on GPUs (38). The increased
size of the DNNs substantially helps in handling missing
data (e.g. missing replicates). The latest BIO CYCLE also
utilizes real-world experimental data available via Circa-
diOmics not only to evaluate performance and fairly com-
pare the new BIO CYCLE algorithm to other available al-
gorithms, but also to better fine tune the algorithm and
make P-value estimations more accurate. In combination,
these new features allow researchers to perform end-to-end
circadian analyses of their data and to compare and com-
bine their data with other available datasets.

Applications

CircadiOmics has numerous and diverse applications. To
name just a few: users can analyze a single dataset, an-
alyze multiple datasets of the same omic type across dif-
ferent tissues or species, and analyze relationships between
datasets of different omic types. This flexibility to perform
comparative analyses has proven to be highly effective for
biological discovery and hypothesis generation and as such
has contributed to numerous studies that have been pub-
lished in high impact journals (39–54). For example, in Ko-
ronowski et al. CircadiOmics was used to better under-
stand the independence of the liver circadian clock. Us-
ing high-throughput transcriptomic and metabolomic data,
they showed that the liver has independent circadian func-
tions specific for metabolic processes, however full circadian
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Figure 3. Frequency analysis rediscovers core clock as well as a few novel circadian regulatory TFs and RBPs. Highlighted genes are those validated in the
in vivo experiments found in Figure 4.

function in the liver depends on signals from other clocks
(55). In Tognini et al. CircadiOmics was used to analyze
metabolomic data in the suprachiasmatic nucleus (SCN)
under various experimental conditions to discover a sensi-
tivity of brain clocks to nutrition (56). Finally, in Masri et al.
CircadiOmics contributed to showing that lung cancer has
no effect on the core clock but rather specifically reprograms
hepatic metabolism, proving that a pathological condition
in a given tissue can influence the circadian homeostasis in
other tissues (57).

Additionally, we performed our own analysis using the
data available via CircadiOmics in aggregate to better un-
derstand the overall hierarchical architecture of transcrip-
tomic circadian regulation. To perform this analysis we
looked at the frequency at which important regulators, such
as transcription factors (TFs) or RNA-binding proteins

(RBPs) are found to oscillate across all mouse and baboon
datasets to quantify their importance in circadian regula-
tion. The top oscillating TFs and RBPs in mice and ba-
boons can be seen in Figure 3. We found that the circadian
core clock appears with the highest frequency and is closely
followed by TFs and RBPs with known interactions to the
core clock. Aside from the core clock, this analysis identi-
fied multiple TFs and RBPs important to circadian regu-
lation, some of which are corroborated by evidence in the
literature and others which are novel. We were able to val-
idate some of the novel findings with animal experiments.
For example, the TFs FUS and EIF4B were identified in
our analyses as having the potential for being strong circa-
dian regulators. Consistent with this result, Figure 4 shows
that the reverse transcription-quantitative PCR (RT-qPCR)
and western blot analyses showed that mRNA and protein
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Figure 4. Validation of computational analysis results by in vivo experiments. Wild type (WT) mice samples were obtained under ad lib conditions. (A)
RT-qPCR were used to determine expression of novel circadian factors detected by computational analysis in the mouse liver. The results are displayed
as percent increase/decrease, from the level of mRNA expressed in the mice at ZT 0. (B) Daily rhythms in protein expression of EIF4B in the whole cell
lysate from the liver (n = 2). Representative image of immunoblot analysis of EIF4B are shown. Line graph shows quantification from EIF4B normalized
to �-tubulin. Values are expressed as a percentage of the value for ZT 0. (C) Chromatin recruitment of BMAL1 at the E-box motif contained in the EIF4B
promoter. ChIP-qPCR assays were done utilizing dual cross-linked livers at ZT 8 and 20 with antibodies against BMAL1 (n = 3 at ZT 8, n = 2 at ZT 20).
*P < 0.05 in Student’s t test. (D) RT-qPCR was used to determine mRNA expression of the novel circadian factors detected by computational analysis in
the liver (n = 5). The results are displayed as percent increase/decrease, from the level of mRNA expressed in the mice at ZT 0. (E) RT-qPCR was used to
determine mRNA expression of novel circadian factors detected by computational analysis in the SCN (n = 2 at ZT 0, n = 3 at ZT 4, 8, 12, 16, 20). The
results are displayed as percent increase/decrease, from the level of mRNA expressed in the mice at ZT 0.

levels of both of these genes have diurnal rhythm in the liver
in certain experiments and FUS was also shown to have a
diurnal rhythmicity in the SCN (Supplementary Materials).
In addition, the TF MXI1 was identified in our analysis as
a novel circadian factor and RT-qPCR analyses were able
to detect rhythmic gene expressions of MXI1 in mice livers
(Figure S4, Supplementary Materials). This analysis was re-
peated on a few other TFs to validate the computational ex-
perimental findings (Supplementary Figure S1). In short, in
vivo experiments confirmed the circadian expression of im-
portant genes predicted in computo by analyzing the data
in CircadiOmics. Together, these findings show that Circa-
diOmics provides a strong foundation for understanding the
organization of the circadian transcriptome on a large scale.

CONCLUSION

CircadiOmics allows users to seamlessly compare and an-
alyze multiple omic time-series data sets simultaneously.
For example, a user can compare transcripts across species
or tissues, or map out relationships between metabolites,
proteins, and transcripts to identify underlying oscillatory
trends. CircadiOmics has proven to be highly effective for
performing end-to-end circadian analyses from hypothesis
generation to publication-ready figures creation. This web
server has contributed to numerous studies that have been
published in high impact journals and in aggregate has been
cited in over 190 publications. The server receives approxi-
mately 1,000 queries per week from around the world and

to the best of our knowledge is the largest single repos-
itory of circadian omic data available. With the quantity
and breadth of its growing, high-quality, circadian omic
data, CircadiOmics continues to be an invaluable resource
for understanding the fundamental landscape of circadian
rhythms and how these rhythms are programmed, and can
be re-programmed, in cells, tissues, organs, and organisms
with significant implications for medicine and therapeutic
interventions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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