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Topics Covered in This Class

* Part 1: Search * Part 4: Machine Learning
e Pathfinding

 Uninformed search Supervised learning

e Informed search * Inductive logic programming
e Adversarial search * Linear models
* Optimization  Deep neural networks

e Local search
e Constraint satisfaction

* Part 2: Knowledge Representation and

e PyTorch
* Reinforcement learning

Reasoning * Markov decision processes
* Propositional logic * Dynamic programming
* First-order logic * Model-free RL
* Prolog * Unsupervised learning
* Part 3: Knowledge Representation and * Clustering
Reasoning Under Uncertainty . Autoencoders
* Probability

* Bayesian networks



* Motivation
* Objects

* Functions
* Predicates
e Quantifiers
* Examples



Ontological Commitment

 What is being assumed about the nature of reality

* Propositional Logic
* The world consists of facts

* First-order logic

* The world consists of objects

* These objects have certain relations among them that do or do not hold

* In the simplest case, a relation amongst no objects is the same as a proposition
* “Itis raining”
* IsRaining

* A relation amongst a single object is a property
* “The cat is brown”
* Brown(Cat)

* A relation amongst two or more objects

 “John and Richard are brothers”
* Brother(John, Richard)



e “The cat is brown and the sofa is brown and the cat is on the sofa”

* Propositional Logic
* ¢cb Asb A cos

* First-Order Logic
* Brown(Cat) A Brown(Sofa) A On(Cat,Sofa)

* First order logic has objects and relations (predicates)

 Relations can have no arguments (propositions) be unary (properties) or n-ary
(relations between objects)



Motivation

* Imagine a knowledge base that describes sets

* How do we add statements describing intersection?
* If the world has 3 sets and integers ranging from 0 to 100

* Propositional logic
cle(siNsy) o (1les; Al ESs,)
1e(siNs3) o (1 E€s; AL ESs;3)
1e(s;Ns3) o (1€s, Al Es;3)
le(s;Nnsy))eo(les, A1 Es))

* First-order logic
* VXx,5,5x€E(sNSs;)) o (xEsyAx Esy)

* First-order logic uses quantifiers and variables to make statements about entire
collections of objects without mentioning a particular object



 “All brown cats blend in with brown sofas”
e “There exists a cat that is not brown”

* First-Order Logic
* Vx,y Brown(x) A Cat(x) A Brown(y) ASofa(y) - Blends(x,y)
* 3x Cat(x) A ~Brown(x)



e “All humans are mortal”

* Propositional logic
* hy A\m4
* hp Am,
* hy Amgy
* First Order Logic
* Vx Human(x) —» Mortal(x)



* “Every dog wags its tail”
*Vx Dog(x) » Wag(x, Tail(x))
e First-order logic uses functions that return objects



Overview

ns Smelly(s) —» Adjacent(Home(Wumpus), s)

Quantifier Variable Predicate Function Constant
Universal Expresses Maps a Objects in
Existential relations. tuple of the world
Returns true or  objects to
false an object
v S Smelly Home Wumpus

Adjacent



First-Order Logic (First-Order Predicate Logic)

* First-order logic (FOL) allow for objects, relations (predicates) amongst objects,
and quantifiers to express properties of many objects without having to
explicitly enumerate all objects

* “First-order” because quantified variables represent objects
* “Predicate calculus” because it quantifies over predicates on objects



Second-Order Logic

* First-order logic
» Variables represent objects
e E.g. we an state that a relationship is transitive
* YV X, v, z BrotherOf(x,y) A BrotherOf(y,z) => BrotherOf(x,z)

* Second-order logic
* Variables represent predicates and functions
* E.g. we can define transitive
* VP, x, v, z Transitive(P) <=>( P(x,y) A P(y,z) => P(x,z) )
* Second-order logic is beyond the scope of this class



e R=Richard
e J=John

brother

person person

king

ft leg



* Objects are nouns

* Objects: Richard, John, crown, Richard’s left
leg, John's left leg




Functions

* Objects do not have to be listed explicitly
* Functions return objects

* Richard’s left leg and John’s left leg are not
given their own name
* LeftLeg(John)
* LeftLeg(Crown)

* What about LeftLeg(Crown)?

* FOL requires total functions: there must be an
output for every input tuple

* To handle this, one can map LeftLeg(Crown) to
some “invisible” value (i.e. NULL)




Predicates

* Predicates express relationships among objects

e Returns true or false, depending on its arguments
* Brother(John, Richard) <- True
* Brother(John,LeftLeg(Richard)) <- False
* OnHead(Crown,John) <- True

* Predicates with one argument are referred to as
properties
* Purple(Crown)

* Predicates with zero arguments are the same as
propositions from propositional logic

* IsMonarchy

* FOL can also use equality
* Father(John) = Henry



* Quantifiers express properties across different
objects

* Instead of enumerating all possible objects,
guantifiers use variables

e Universal quantifiers V
e Conjunction (AND) over all objects

* Existential quantifiers 3
* Disjunction (OR) over all objects

* “All kings are persons”
* Vx King(x) — Person(x)

e “John has a crown on his head”
* 3x Crown(x) A OnHead(x,]John)



Hints for Quantifiers

* “All kings are persons”
* Vx King(x) — Person(x)
* This is too strong: Vx King(x) A Person(x)

e “John has a crown on his head”
 3x Crown(x) A OnHead(x,]John)
* This is too weak: 3x Crown(x) » OnHead(x, John) \(




Nested Quantifiers

The order of “unlike” quantifiers is important.

Like nested variable scopes in a programming language.
Like nested ANDs and ORs in a logical sentence.

VvV xdy Loves(x,y)
— For everyone (“all x”) there is someone (“exists y”’) whom they love.
— There might be a different y for each x (y is inside the scope of x)
dy ¥V x Loves(x,y)
— There is someone (“exists y”) whom everyone loves (“all x”).
— Every x loves the same y (x is inside the scope of y)

Clearer with parentheses: 3y (V¥ x Loves(x,y) )

The order of “like” quantifiers does not matter.
Like nested ANDs and ANDs in a logical sentence
Vx Yy P(x,y)=Vy VX P(x, y)
dx Ay P(x, y) = dy Ix P(x, y)




Terms

 Aterm is a logical expression that refers to an
object
* Constant symbols
* Functions
e Variables




First-Order Logic Grammar

Sentence — AtomicSentence | ComplexSentence
AtomicSentence — Predicate | Predicate(Term,...) | Term = Term

ComplexSentence — ( Sentence)
- Sentence

Sentence N\ Sentence

Sentence = Sentence

|

|

| Sentence V Sentence

|

|  Sentence < Sentence
|

Quantifier Variable, ... Sentence

Term — Function(Term,...)
| Constant
| Variable
Quantifier — V| 3
Constant — A| X1 | John| ---
Variable — a| x| s| ---
Predicate — True | False | After | Loves | Raining | ---
Function — Mother | LeftLeg | ---

OPERATOR PRECEDENCE  : —,=,A,V,=,&



Conventions and Assumptions

e Each quantifier has a unique variable
* The variable belongs to the innermost quantifier that mentions it
* This can be confusing

* Vx (Crown(x) Y, (Elx Brother(Richard, x))) <- confusing
* Vx (Crown(x) Y, (EIZ Brother(Richard, z))) <- better

* Unigue—names assumption
* Every constant symbol refers to a distinct object
* For example, John and Richard must be two different objects



De Morgan’s Rule for Quantifiers

* Universal quantifiers are conjunctions (and) over the universe of objects
 Existential quantifiers are disjunctions (or) over the universe of objects

De Morgan’s Law for Quantifiers

’ Generalized De Morgan’s Rule . .
De Morgan's Rule J * “No one likes parsnips

PArR=—(-Pv-Q) Vx P =—3x(=P) * Vx-Likes(x, Parsnips) = —3x Likes(x, Parsnips)
Pv@R=—(-Pr-Q) Ax P ==V x(=P) « “Everyone likes ice cream”
~(PAQR)=—-PVv-Q —Vx P =3x(=P) * Vx Likes(x,IceCream) = —3x—Likes(x, IceCream)

—(PvQ@)=-Pnr-Q —3Ax P =V x(=P)



* “Brothers are siblings”
* Vx,y Brother(x,y) — Sibling(x,y)
e “The function Sibling is symmetric”
* Vx,y Sibling(x,y) < Sibling(y, x)
* “First cousin is a child of a parent’s sibling”
* Vx,y FirstCousin(x,y) < 3Ip,ps Parent(p,x) A Sibling(ps,p) A Parent(ps,y)

* “All humans are mortal”
* Vx Human(x) —» Mortal(x)

e “Fifi has a sister who is a cat”
« Jx Sister(Fifi,x) A Cat(x)



e “For every food, there is a person who eats that food”
* Use: Food(x), Person(y), Eats(y, x)

* Vx3y Food(x) — Person(y) A Eats(y, x)

* Vx Food(x) — 3y Person(y) A Eats(y, x)
* Pushingin the 3

* Vx—Food(x) V (3yPerson(y) A Eats(y, x))

* Implication elimination

* Common mistakes:
* Vx3y Food(x) A Person(y) — Eats(y, x)

* Forallx, if x is a food and there exists some person vy, that person eats food x

* Vx3y Food(x) A Person(y) A Eats(y, x)

* Everything is a food and there exists a person that eats that food



* “Every person eats every food”
* “All greedy kings are evil”

* “Everyone has a favorite food”
e “Every person eats some food”
* “Some person eats some food”



* “Every person eats every food”
* Vx,y Person(x) A Food(y) — Eats(x,y)

* “All greedy kings are evil”
* Vx Greedy(x) A King(x) — Evil(x)
* “Everyone has a favorite food”
* Vx3y Person(x) — Food(y) A Favorite(y, x)

e “Every person eats some food”
* Vx3y Person(x) - Food(y) A Eats(x,y)

* “Some person eats some food”
« Ax3y Person(x) A Food(y) A Eats(x,y)



Quick Quiz

1. (5 pts each, 30 pts total) Fill in each blank below with Y (= Yes) or N (= No) depending on
whether or not the first order predicate logic sentence correctly expresses the English sentence.

a.  “All cats are mammals.” Vx Cat(x) & Mammal(x)

b.  “Spot has a sister who 1s a cat.” dx Sister(x, Spot) & Cat(x)

c. ___ “Forevery person, there 1s someone whom that person likes.” dxVy Likes(x, v)
d.  “There 1s someone who 1s liked by everyone.” Vx3y Likes(x, v)

€. “Everyone likes ice cream.” — dx — Likes(x, IceCream)

f. “All men are mortal.” Vx Man(x) = Mortal(x)



Quick Quiz

1. (5 pts each, 30 pts total) Fill in each blank below with Y (= Yes) or N (= No) depending on
whether or not the first order predicate logic sentence correctly expresses the English sentence.

a. N “All cats are mammals.” Vx Cat(x) & Mammal(x)

Vx Cat(x) & Mammal(x) means “Everything 1s a cat and also 1s a mammal.”
Vx Cat(x) = Mammal(x) means “All cats are mammals.”

Remember that implication is the natural connective to use with V.

b. Y “Spot has a sister who 1s a cat.” 3x Sister(x, Spot) & Cat(x)

Remember that conjunction is the natural connective to use with 3

C. N “For every person, there 1s someone whom that person likes.” 3xVy Likes(x, y)

dxVy Likes(x, v) means “There 1s someone who likes everyone.”
Vx3dy Likes(x, y) means “For every person, there is someone that that person likes.”

Remember that the second guantifier is inside the scope of the first quantifier.



d. N “There 1s someone who 1s liked by everyone.” Vxdy Likes(x, y)

Vx3dy Likes(x, v) means “For every person, there 1s someone that that person likes.”
dxVy Likes(y, x) means “There 1s someone who 1s liked by everyone.”

€. Y “Everyone likes 1ce cream.” — dx — Likes(x, IceCream)

f. Y “All men are mortal.” Vx Man(x) = Mortal(x)




Quick Quiz

2. (5 pts each, 40 pts total) Let PKF(x, ) mean “Person x Knows Fact y”. For purposes of this
question only, you may assume that the first argument 1s a person and the second 1s a fact. For
each English sentence below, write the first order predicate logic sentence that best expresses it.

Use “—” to mean “not.” The first one 1s done for you as an example.

a. Every person knows every fact. _ VxVy PKF'(x, v)

b. Every person knows at least one fact.

¢. There 1s a person who knows at least one fact.

d. There 1s a person who knows every fact.

e. No person knows every fact.

f. There 1s a person who knows no fact.

g. No person knows any fact.

h. There 1s a fact that 1s known by every person.

1. There 1s a fact that no person knows.




Quick Quiz

2. (5 pts each, 40 pts total) Let PKF(x, y) mean “Person x Knows Fact y”. For purposes of this
question only, you may assume that the first argument 1s a person and the second 1s a fact. For
each English sentence below, write the first order predicate logic sentence that best expresses it.

Use “—” to mean “not.” The first one 1s done for you as an example.

a. Every person knows every fact. _ VxVy PKF(x, )

b. Every person knows at least one fact. Vx3y PKF(x, v)

c. There 1s a person who knows at least one fact. _ 3x3y PKF(x, v)

d. There 1s a person who knows every fact. dxVy PKF(x, v)

e. No person knows every fact. Vxdv —=PKF(x, v) .

alternatively Vx=Vy PKF(x, v) or —3dxVv PKF(x, v).




Quick Quiz

f. There 1s a person who knows no fact. dxVy =PKF(x, v).

alternatively dx—dyv PKF(x, v) or —Vxdy PKF(x, v).

g. No person knows any fact. VxVy =PKF(x, v)

alternatively Vx—3dy PKF(x, v) or —dxdy PKF(x, v).

h. There 1s a fact that 1s known by every person. dy Vx PKF(x, v)

1. There 1s a fact that no person knows. dy Vx =PKF(x, y)

alternatively dy—dx PKF(x, v) or —Vvdx PKF(x, v).




Knowledge Engineering

* In FOL, there are many ways to represent the same thing
e “Ball-5is red”

e HasColor(Ball-5, Red)

* Red(Ball-5)

* HasProperty(Ball-5, Color, Red)

e ColorOf(Ball-5) = Red

e HasColor(Ball-5(), Red())

 Where Ball-5 and Red() are functions with no arguments that return an object

* Therefore, it is important to agree upon knowledge representation conventions
before encoding knowledge



Knowledge Engineering

* The general process of knowledge base construction

* Steps
* |dentify the questions
Assemble the relevant knowledge
Decide on a vocabulary of predicates, functions, and constants
Encode general knowledge about the domain
Encode a description of the problem instance
Pose queries to the inference procedure and get answers
Debug and evaluate the knowledge base



Knowledge Engineering: Digital Circuit
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Figure 8.6 A digital circuit C'1, purporting to be a one-bit full adder. The first two inputs are
the two bits to be added, and the third input is a carry bit. The first output is the sum, and
the second output is a carry bit for the next adder. The circuit contains two XOR gates, two
AND gates, and one OR gate.
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|dentify the questions

* There are many aspects of a digital circuit that an engineer may be concerned
with
* Timing, power consumption, resources, etc.
* For this example, we will focus on functionality
* Does the circuit add properly?
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Figure 8.6 A digital circuit C, purporting to be a one-bit full adder. The first two inputs are
the two bits to be added, and the third input is a carry bit. The first output is the sum, and
the second output is a carry bit for the next adder. The circuit contains two XOR gates, two
AND gates, and one OR gate.




Assemble the Relevant Knowledge

Understand the scope of the knowledge

May have to work with domain experts

* Knowledge relevant to the task
* Types of gates: AND, OR, XOR
 How the gates are connected
* The input and output signal of the gates

 Knowledge irrelevant to the task
 Size, shape, color, of gates
* Path the wires take
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Figure 8.6 A digital circuit C, purporting to be a one-bit full adder. The first two inputs are
the two bits to be added, and the third input is a carry bit. The first output is the sum, and
the second output is a carry bit for the next adder. The circuit contains two XOR gates, two
AND gates, and one OR gate.




Decide on a Vocabulary

* This vocabulary is known as the ontology
* A particular theory of the nature of being or existence
* Determines what kinds of things exists, but does not determine their specific interrelationships

* To identify a particular terminal, we use the functions In and Out
° In(Z, Cl), OUt(l, Xl)
* Second input to C1, first output of X1

* To identify the gate type, we use the function T'ype
* Type(X;) = XOR

* We use the predicate Connected to represent connectivity
» Connected(Out(1,X,),In(1,X,))
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Figure 8.6 A digital circuit C, purporting to be a one-bit full adder. The first two inputs are
the two bits to be added, and the third input is a carry bit. The first output is the sum, and
the second output is a carry bit for the next adder. The circuit contains two XOR gates, two
AND gates, and one OR gate.




Encode General Knowledge About the Domain

Vt,,t, Connected(t,, t,) = Signal(t,) = Signal(t,)

Vvt Signal(t) =1 v Signal(t) =0

120

Vt,,t, Connected(t,, t,) = Connected(t,, t,)

Vg Type(g) = OR = Signal(Out(1,g)) =1 < dn Signal(In(n,g)) = 1

Vg Type(g) = AND = Signal(Out(1,g)) = 0 < dn Signal(In(n,g)) =0

Vg Type(g) = XOR = Signal(Out(1,g)) = 1 < Signal(In(1,g)) # Signal(In(2,g))

Vg Type(g) = NOT = Signal(Out(1,g)) # Signal(In(1,g))



Encode the Specific Problem Instance

Type(X;) = XOR Type(X,) = XOR
Type(A;) = AND Type(A,) = AND
Type(O,) = OR

Connected(Out(1,X,),In(1,X,)) Connected(In(1,C,),In(1,X,))

Connected(Out(1,X,),In(2,A,)) Connected(In(1,C,),In(1,A,))

Connected(Out(1,A,),In(1,0,)) Connected(In(2,C,),In(2,X,))

Connected(Out(1,A,),In(2,0,)) Connected(In(2,C,),In(2,A,))

Connected(Out(1,X,),0ut(1,C,)) Connected(In(3,C,),In(2,X,))

Connected(Out(1,0,),0ut(2,C,)) Connected(In(3,C,),In(1,A,))
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Figure 8.6 A digital circuit C, purporting to be a one-bit full adder. The first two inputs are
the two bits to be added, and the third input is a carry bit. The first output is the sum, and
the second output is a carry bit for the next adder. The circuit contains two XOR gates, two
AND gates, and one OR gate.




Pose Queries to the Inference Procedure

di,,i,,i5,04,0, Signal(In(1,C,)) = i; A Signal(In(2,C,)) =i, A Signal(In(3,C,)) = i
A Signal(Out(1,C,)) = o, A Signal(Out(2,C,)) = o,

* The KB should return all possible substitutions
 This should hopefully be the same as the the truth table for a full adder
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Figure 8.6 A digital circuit C, purporting to be a one-bit full adder. The first two inputs are
the two bits to be added, and the third input is a carry bit. The first output is the sum, and
the second output is a carry bit for the next adder. The circuit contains two XOR gates, two
AND gates, and one OR gate.




Debug the Knowledge Base

* For example, if we forget to tell the knowledge base that 0 # 1, we would get
unexpected results

* Just like in programming, we will have to get creative when debugging
* For example, we can look at the output of each gate
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Figure 8.6 A digital circuit C, purporting to be a one-bit full adder. The first two inputs are
the two bits to be added, and the third input is a carry bit. The first output is the sum, and
the second output is a carry bit for the next adder. The circuit contains two XOR gates, two
AND gates, and one OR gate.




* First-Order Logic
* Quantifiers
Variables
Constants
Functions
Predicates

* Order of unlike quantifiers matters
* Knowledge engineering



* Inference in first-order logic



