
Machine Learning: Dynamic Programming
Forest Agostinelli

University of South Carolina

Topics Covered in This Class
• Part 1: Search

• Pathfinding
• Uninformed search
• Informed search

• Adversarial search
• Optimization

• Local search
• Constraint satisfaction

• Part 2: Knowledge Representation and
Reasoning
• Propositional logic
• First-order logic
• Prolog

• Part 3: Knowledge Representation and
Reasoning Under Uncertainty
• Probability
• Bayesian networks

• Part 4: Machine Learning
• Supervised learning

• Inductive logic programming
• Linear models
• Deep neural networks
• PyTorch

• Reinforcement learning
• Markov decision processes
• Dynamic programming
• Model-free RL

• Unsupervised learning
• Clustering
• Autoencoders

Outline

• Background
• Policy Evaluation
• Policy Improvement
• Policy Iteration
• Modified Policy Iteration
• Value Iteration

• Approximate value iteration

Reinforcement Learning

• Reinforcement learning: learning to
map states to actions so that we
maximize the expected future reward
we receive from the environment.
• This mapping of states to actions is

called a policy function.
• Deterministic: 𝑎 = 𝜋(𝑠)
• Stochastic: 𝜋 𝑎 𝑠 = 𝑃(𝐴 = 𝑎|𝑆 = 𝑠)

• At each time step 𝑡
• In state S!, agent takes action A!
• Based on state s! and action a!, the

environment transitions to state S!"# and
outputs reward R!"#

Markov Decision Processes (MDPs)

• States
• Actions
• Transition Probabilities: 𝑃(𝑆!"# = 𝑠$, 𝑅!"# = 𝑟|𝑆! = 𝑠, 𝐴! = 𝑎)
• Defines the dynamics of the MDP

• The state-transition probabilities can be obtained from the transition
probabilities
• 𝑝 𝑠$ 𝑠, 𝑎 = ∑%∈ℛ 𝑝(𝑠$, 𝑟|𝑠, 𝑎)

• The expected reward can be obtained from the transition probabilities
• 𝑟 𝑠, 𝑎 = ∑%∈ℛ 𝑟 ∑(!∈𝒮 𝑝(𝑠$, 𝑟|𝑠, 𝑎) = 𝔼[𝑅*"#|𝑆* = 𝑠, 𝐴* = 𝑎]

• For now, we assume the state and actions are discrete and finite, however, this
restriction can be relaxed to be continuous and infinite

MDPs: Returns and Value

• Return: the sum of rewards after timestep 𝑡
• 𝐺* = 𝑅*"# + 𝛾𝑅*"+ + 𝛾+𝑅*",…
• We seek to maximize the expected return

• State-value function
• 𝑣- 𝑠 = 𝔼- 𝐺* 𝑆* = 𝑠 = 𝔼- ∑./01 𝛾.𝑅*"#". 𝑆* = 𝑠
• 𝑣∗ 𝑠 = max

-
𝑣- 𝑠

• Action-value function
• 𝑞- 𝑠, 𝑎 = 𝔼- 𝐺* 𝑆* = 𝑠, 𝐴* = 𝑎 = 𝔼- ∑./01 𝛾.𝑅*"#". 𝑆* = 𝑠, 𝐴* = 𝑎
• 𝑞∗ 𝑠, 𝑎 = max

-
𝑞- 𝑠, 𝑎

• Value functions are specific to a given policy 𝜋

Dynamic Programming
• Solves problems by recursively breaking them down into simpler subproblems
• Requires

• Optimal substructure: Can construct an optimal solution from optimal solutions of subproblems

𝑣∗ 𝑠 = max
"
(𝑟 𝑠, 𝑎 + 𝛾-

#!
𝑝 𝑠$ 𝑠, 𝑎 𝑣∗ 𝑠$)

• Principle of optimality
• Overlapping subproblems: Solutions to subproblems are re-used

• Value functions

𝑆" 𝑆#

𝑆$

𝑆%

𝑆&

𝑆'

𝑆(

𝑆)

Dynamic Programming

• Fibonacci sequence
• Scheduling
• Sequence alignment (DNA)
• AI Farm

By Jahobr - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=58460223
By en:User:Dcoatzee, traced by User:Stannered -
en:Image:Fibonacci dynamic programming.png, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=3325402

Dynamic Programming: History

• The term dynamic programming was originally used in the 1940s by Richard
Bellman to describe the process of solving problems where one needs to find
the best decisions one after another.
• By 1953, he refined this to the modern meaning, referring specifically to nesting

smaller decision problems inside larger decisions.
• The word dynamic was chosen by Bellman to capture the time-varying aspect of

the problems, and because it sounded impressive.
• The word programming referred to the use of the method to find an optimal

program.

From: https://en.wikipedia.org/wiki/Dynamic_programming

Dynamic Programming

• We will use it to evaluate a policy and compute an optimal policy given a
perfect model an MDP
• 𝑝 𝑠$, 𝑟 𝑠, 𝑎

• Foundational for reinforcement learning
• Using dynamic programming, we will do policy iteration by iterating between

policy evaluation and policy improvement

Generalized Policy Iteration

• Policy Evaluation: Estimate the expected future
reward when following policy 𝜋
• Policy Improvement: Improve policy 𝜋 so that it

obtains a greater expected future reward
• We can obtain an optimal policy by iterating

between policy evaluation and policy improvement

Dynamic Programming: Applications

• We assume that we are given a model of the MDP that characterizes our
problem
• While this assumption does not hold in many contexts, it does in many others
• Organic chemistry
• Puzzles
• Quantum computing
• Theorem proving

• Furthermore, it builds the foundation that we will use to explore model-free
algorithms

Bellman Equation

• 𝑣% 𝑠 = ∑& 𝜋 𝑎 𝑠 (𝑟 𝑠, 𝑎 + 𝛾 ∑'! 𝑝 𝑠$ 𝑠, 𝑎 𝑣% 𝑠$)
• 𝑞% 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 ∑'! 𝑝 𝑠$ 𝑠, 𝑎 ∑& 𝜋 𝑎 𝑠′ 𝑞% 𝑠′, 𝑎
• Optimal substructure: Can construct an optimal solution from optimal solutions

of subproblems

𝑣- 𝑠 𝑞- 𝑠

Outline

• Background
• Policy Evaluation
• Policy Improvement
• Policy Iteration
• Modified Policy Iteration
• Value Iteration

• Approximate value iteration

Policy Evaluation

• Estimate the expected future reward when following policy 𝜋
• From the Bellman equation we know that
• 𝑣- 𝑠 = ∑4𝜋 𝑎 𝑠 (𝑟 𝑠, 𝑎 + 𝛾 ∑(! 𝑝 𝑠$ 𝑠, 𝑎 𝑣- 𝑠$)

• Given a policy 𝜋, what if we searched for a function 𝑉 that satisfies the Bellman
equation?
• Will we have successfully evaluated 𝜋?

• If so, how should we search for 𝑉?
• Use the Bellman equation as an update rule
• 𝑉 𝑠 = ∑4𝜋 𝑎 𝑠 (𝑟 𝑠, 𝑎 + 𝛾 ∑(! 𝑝 𝑠$ 𝑠, 𝑎 𝑉 𝑠$)

Policy Evaluation

Is this guaranteed to converge to 𝑣* if the threshold is 0?

Algorithm 1 Policy Evaluation

1: procedure Policy Evaluation(S, V, ⇡, �)
2: � inf

3: while � > 0 do
4: � 0

5: for s 2 S do
6: v V (s)
7: V (s)

P
a ⇡(a|s)(r(s, a) + �

P
s0 p(s

0|s, a)V (s0))
8: � max(�, |v � V (s)|)
9: end for
10: end while
11: return V . v⇡
12: end procedure

1.2 Policy Improvement (20 pts)

Implement policy_improvement (shown in Algorithm 2) in proj_code/proj4.py. Remember that the

policy that you return will map states to the probability of each action. Since the policy is deterministic,

only one action should have a non-zero probability with a value of 1.

Algorithm 2 Policy Improvement

1: procedure Policy Improvement(S, V, �)
2: for s 2 S do
3: ⇡0

(s) = argmaxa(r(s, a) + �
P

s0 p(s
0|s, a)V (s0))

4: end for
5: return ⇡0

6: end procedure

2 Q-learning (50 pts)

Implement q_learning_step (shown in Algorithm 4) in proc_code/proj4.py.

Key building blocks:

• env.sample_transition(state, action): returns, in this order, the next state and reward

• env.get_actions() function that returns a list of all possible actions

• action_vals: you can obtain Q(s, a) with action_vals[state][action]

Switches:

• --discount, to change the discount (default=1.0)

• --learning_rate, to change the discount (default=0.5)

• --epsilon, to change the discount (default=0.1)

• --rand_right, to change the probability that the wind blows you to the right (default=0.0)

2

Policy Evaluation: Convergence

𝑣% 𝑠 =7
&

𝜋 𝑎 𝑠 (𝑟 𝑠, 𝑎 + 𝛾7
'!
𝑝 𝑠$ 𝑠, 𝑎 𝑣% 𝑠$)

𝑣% 𝑠 =7
&

𝜋 𝑎 𝑠 𝑟 𝑠, 𝑎 +𝛾7
&

𝜋 𝑎 𝑠 7
'!
𝑝 𝑠$ 𝑠, 𝑎 𝑣% 𝑠$

𝒗𝝅 = 𝒓% + 𝛾𝑷𝝅𝒗%

• Matrices:
• 𝒗𝝅 is a vector of values for each state, size |𝒮|
• 𝒓𝝅 is a vector of rewards for each state, size |𝒮|
• 𝑷𝝅 is a matrix of transition probabilities for each pair of states, size |𝒮|x |𝒮|

Policy Evaluation: Convergence

• Define	𝑇 as	the	Bellman	backup	operator:
𝑇(𝒗) ≔ 𝒓% + 𝛾𝑷𝝅𝒗

• We	know	that	there	exists	a	fixed	point
𝑇(𝒗𝝅) = 𝒗-

• The	infinity	norm:
𝒙 1 ≔ max

7
|x7|

• If:
𝑇 𝒖 − 𝑇 𝒗

)
≤ 𝛾 𝒖 − 𝒗

)
for	𝛾 ∈ [0,1)

• Then 𝑇 is a contraction mapping
• Banach-Caccioppoli fixed point theorem proves that repeated applications of 𝑇

will converge to a unique fixed point (i.e. 𝒗%).

Policy Evaluation: Convergence

𝑇 𝒖 − 𝑇 𝒗) = 𝒓% + 𝛾𝑷𝝅𝒖 − 𝒓% + 𝛾𝑷𝝅𝒗)
= 𝛾𝑷𝝅𝒖 + 𝛾𝑷𝝅𝒗

)
= 𝛾 𝑷𝝅(𝒖 + 𝒗))

≤ 𝛾 𝑷𝝅 𝒖 + 𝒗))
// 𝑷𝝅 is a matrix of transition probabilities, sums to 1

≤ 𝛾 𝒖 + 𝒗
)

Policy Evaluation AI Farm

• Policy: Uniform random
• AI Farm took 4576 iterations to converge

with 𝛾 = 1
• 𝛾 = 0.99 takes 1345 iterations
• 𝛾 = 0.9 takes 191 iterations

• What if policy said to always go up?
• 𝛾 = 1
• 𝛾 < 1

Outline

• Background
• Policy Evaluation
• Policy Improvement
• Policy Iteration
• Modified Policy Iteration
• Value Iteration

• Approximate value iteration

Policy Improvement

• We have evaluated policy 𝜋, how can we find a better policy?
• 𝜋′ ≥ 𝜋 if and only if 𝑣%$ 𝑠 ≥ 𝑣% 𝑠 for all 𝑠 ∈ 𝒮
• We set the policy to be greedy with respect to 𝑣%
• 𝜋$ 𝑠 = argmax

&
(𝑟 𝑠, 𝑎 + 𝛾 ∑'! 𝑝 𝑠$ 𝑠, 𝑎 𝑣% 𝑠$)

• This policy will always be the same or better than the previous one
• Policy improvement theorem.

Policy Improvement

When acting greedily with respect to 𝑣*

• Better than original uniform random policy
• Still not optimal

Outline

• Background
• Policy Evaluation
• Policy Improvement
• Policy Iteration
• Modified Policy Iteration
• Value Iteration

• Approximate value iteration

Policy Iteration

• Policy improvement improves a policy 𝜋 and obtains a new policy 𝜋$ such that,
𝜋′ ≥ 𝜋
• If 𝜋$ = 𝜋, then 𝑣%! = 𝑣%
• Therefore, 𝑣%$ 𝑠 = max

&
(𝑟 𝑠, 𝑎 + 𝛾 ∑'! 𝑝 𝑠$ 𝑠, 𝑎 𝑣%$ 𝑠$)

• This is the same as the Bellman optimality equation!
• Does	this	mean	𝜋$ = 𝜋∗ and 𝑣%$ = 𝑣∗?
• There is a proof showing that the Bellman optimality equation is a unique fixed

point
• Similar to that of the Bellman equation

Policy Iteration

Policy Iteration: AI Farm

Do We Have to Wait For Policy Evaluation to Converge?

Modified Policy Iteration

• We do not have to run policy evaluation to convergence.
• We can stop after reaching some threshold
• We can stop after 𝑘 iterations
• 𝑘 = 1 is the same as value iteration

Bellman Optimality Equation

• 𝑣∗ 𝑠 = max
&
(𝑟 𝑠, 𝑎 + 𝛾 ∑'! 𝑝 𝑠$ 𝑠, 𝑎 𝑣∗ 𝑠$)

• 𝑞∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 ∑'! 𝑝 𝑠$ 𝑠, 𝑎 max
&$

𝑞∗ 𝑠′, 𝑎′

Value Iteration

• Find the optimal value function
• Recall the Bellman optimality equation
• 𝑣∗ 𝑠 = max

4
(𝑟 𝑠, 𝑎 + 𝛾 ∑(! 𝑝 𝑠$ 𝑠, 𝑎 𝑣∗ 𝑠$)

• Use this as an update rule
• 𝑉 𝑠 = max

4
(𝑟 𝑠, 𝑎 + 𝛾 ∑(! 𝑝 𝑠$ 𝑠, 𝑎 𝑉 𝑠$)

• Combines policy evaluation and policy improvement into one step
• There is a proof similar to that of policy evaluation to prove that repeatedly

updating 𝑉 will converge to a unique fixed point
• Bellman optimality equation

Value Iteration

Value Iteration: AI Farm

𝑝 = 0 𝑝 = 0.1 𝑝 = 0.5

Asynchronous Policy Iteration

• We do not have to update all states at every iteration
• Prioritize states based on Bellman error
• Difference between current and updated estimation of state value

• Prioritize states based on relevance to the agent’s experience
• To converge, must continue to update all states, though it does not have to be at

every iteration

Outline

• Background
• Policy Evaluation
• Policy Improvement
• Policy Iteration
• Modified Policy Iteration
• Value Iteration

• Approximate value iteration

Approximate Value Iteration

• Sometimes, we can
accurately define the
MDP, however, the state
space is too large to store
in a table
• Therefore, we will need

to use an architecture to
approximate the value
• The goal is to have an

architecture whose
number of parameters is
far less than the size of
the state space

Quantum Compiling

Chemical Synthesis

Puzzles

Approximate Value Iteration

• Value	Iteration
• 𝑉 𝑠 = max

4
(𝑟 𝑠, 𝑎 + 𝛾 ∑(! 𝑝 𝑠$ 𝑠, 𝑎 𝑉 𝑠$)

• Approximate	Value	Iteration
• 𝑦 = max

4
(𝑟 𝑠, 𝑎 + 𝛾 ∑(! 𝑝 𝑠$ 𝑠, 𝑎 O𝑣 𝑠$, 𝒘)

• 𝐸 𝒘 = #
+ 𝑦 − O𝑣 𝑠,𝒘

+

• ∇𝐰𝐸 𝐰 = 𝑦 − O𝑣 𝑠,𝒘 ∇𝐰 O𝑣 𝑠,𝒘
• Even though 𝑦 depends on 𝐰, we do not differentiate 𝑦 with respect to 𝐰.
• Only supervision is that 𝑦 = 0 for terminal states

Convergence

• Unlike in the tabular case, we cannot guarantee convergence in the case of non-
linear function approximators
• However, there are many different methods that we can use to make deep

reinforcement learning work in practice

Deep Approximate Value Iteration

• 𝑦 = max
&
(𝑟 𝑠, 𝑎 + 𝛾 ∑'! 𝑝 𝑠$ 𝑠, 𝑎 g𝑣 𝑠$, 𝒘)

• 𝐸 𝒘 = #
+
𝑦 − g𝑣 𝑠,𝒘

+

Prioritized Sweeping

Goal

.

• Prioritized sweeping: Generate training data by taking moves in reverse from
the goal

Solving the Rubik’s Cube
• Deep approximate value iteration and A*

search
• Solves the Rubik’s cube and 6 other

puzzles
• Can be applied to other areas in the

natural sciences

http://deepcube.igb.uci.edu/

Agostinelli, Forest, et al. "Solving the Rubik’s cube with deep reinforcement learning and search." Nature Machine Intelligence 1.8 (2019): 356-363.

http://deepcube.igb.uci.edu/

Summary

• Policy Evaluation: Uses Bellman equation as an update rule
𝑉 𝑠 =U

4

𝜋 𝑎 𝑠 (𝑟 𝑠, 𝑎 + 𝛾U
(!
𝑝 𝑠$ 𝑠, 𝑎 𝑉 𝑠$)

• Policy Improvement: Behave greedily with respect to value function
𝜋$ 𝑠 = argmax

4
(𝑟 𝑠, 𝑎 + 𝛾U

(!
𝑝 𝑠$ 𝑠, 𝑎 𝑉 𝑠$)

• Policy Iteration: Iterate between policy evaluation and policy improvement until
convergence
• Value Iteration: Uses Bellman optimality equation as an update rule

𝑉 𝑠 = max
4
(𝑟 𝑠, 𝑎 + 𝛾U

(!
𝑝 𝑠$ 𝑠, 𝑎 𝑉 𝑠$)

