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Topics Covered in This Class

* Part 1: Search * Part 4: Machine Learning
e Pathfinding

 Uninformed search Supervised learning

e Informed search * Inductive logic programming
e Adversarial search * Linear models
* Optimization  Deep neural networks

e Local search
e Constraint satisfaction

* Part 2: Knowledge Representation and

e PyTorch
* Reinforcement learning

Reasoning * Markov decision processes
* Propositional logic * Dynamic programming
* First-order logic * Model-free RL
* Prolog * Unsupervised learning
* Part 3: Knowledge Representation and * Clustering
Reasoning Under Uncertainty . Autoencoders
* Probability

* Bayesian networks



* Linear regression
 Gradient descent

e Logistic regression (probabilistic classification)
* Gradient descent



Hypothesis Space

* It is important that the hypothesis space be : .
appropriate for the task at hand

* For example, if the observations have a linear

input/output relationship, it is best to use a linear
model

 However, if the observations have a non-linear

input/output relationship, then a linear model | |
will provide a poor explanation of the data \/ '\-\NJ\/
* On the other hand, if your hypothesis space is too o '

large, then you may learn unnecessarily
complicated hypotheses

Overfitting



Regression and Classification

* Learn the relationship between the input x € RP and output y € R4
*y=f(x)

* The input x is also known as the features or predictors

* Regression: y is a continuous variable

* Classification: y is a categorical variable




Linear Regression

Limits model of input/output relationship to a line

Learning a function f(x, @) with parameters 6
* Linear model 8 = [w, b]

flow,b) =wlx+b =Y, wix; +b

Examples (may not truly be linear!)
* Yield of tomatoes as a function of health
* Expression of a gene as a function of drug concentration




Linear Regression

e Assume 1 dimensional output

* Data
* Inputs: x4, ..., Xy where x; € RP*1
* Qutputs: yq, ..., Yy Wherey; € R

* Data matrix
« X € RVXP
* The it row contains example x;

* Vector of outputs
cy = RNXl

* Parameters
« w € RP*! (weights)
b € R (biases)

* oSS

+ £(0) = L(vn — f(x,0))°



Linear Regression: Analytical Solution

¢ £(8) = Xo(vn — f(x,0))° = [|Xw — y||2
*VoLl(0) =2X"(Xw—vy) =0
ew' = (XTX)71XTy

e Say there is no analytical solution, what kind of problem can this be posed as?
e Optimization problem
* We can do something similar to hill-climbing search where we want to minimize the loss



Linear Regression: Gradient Descent

2
* L(0) = —Zn(yn f(x,0))
e Gradient — A vector of partial derivatives

aL(O)  9L(H)
* VoL(0) = [ 30, ""’aep+1]

w=w-—aVyL(0)

* Where a is the learning rate
* This determines how big of a step we take in that direction




Gradient Descent: 1D Example

* One dimensional example

e L(W) = w?
. oL(w)
= 2w

L(w) : st

Minimized



Derivatives

* The rate of change of a function at an infinitesimally small

point
LG _ i FOH)—f ()
ox h—-0 h
LIx _ g j \ it /
dx e /
. d(xc) | :
=) = ¢ unmy
ax
0+ () _ 9f1(x) n df2(x) ‘
dx dx dx
. dx™ — nxn_l

0x



Derivatives

. dln(x) 1
Ix  x

. da* 4

= a Ina
. de*

Ix €

0 0 0
. aﬁ(x)fz(x) = f1(x)af2(x) + fz(x)aﬁ(x)
L0 filx) _ fz(x);—xﬁ(x)—ﬁ(x)%fz(x)

dx fo(x) f2(x)?

J0 1 1 0

x e - rarox] ¥
e o) =22

ox  Ox 1+e™X

. a(x)(l — a(x)) =o(x)o(—x)



Derivatives: Chain Rule




Linear Regression: 1D with No Bias

vy, =3x + €,  L(w) = %Zn(yn — Wxn)z
e e, ~N(0,0.5
n ( ) + What is 2225
[, W) = wxy orw)
L 1
. av\‘:v = _zZn(Yn o Wxn) Xn
2
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Linear Regression: 1D with No Bias

[ — 1 2

y, = 3x + €n ° L(W) — %Zn(yn o Wxn)
* €, ~ N(0,0S) o a0L(w) — _12 ( — WX )x
. f(xn’ W) — Wxn ow n n yn n n

dL(w)
W =W —«
ow

& ._3.? P o

¥ % s e
- i & &

a=1.0 a=0.1 a =15.0 a =10.0



Linear Regression: 1D with Bias

*Yp=3x+3+e,  Lw,b) = — Y. (¥ — (Wx,, + b))
e, ~N(0,0.5) aﬁ(znb) 0L(w,b)
" e What is ——- and 2229
* f(x,,w,b) =wx, +b - ow b
L(w.b 1
. a‘:lv = _;Zn(Yn — (wx, + b)) Xn

0L(w,b
¢ D = 2N (9 — (W, + D))

n




Linear Regression: 1D with Bias

*yn=3x+3+e, ¢ LW, b) = = Fn(yn — Wiy + b))?
° ~ d0L(w,b 1
]E;z N(Ig)),OS) . * g:lv ) = _;Zn(:)’n — (wxp, + b)) xp,
* (X, W,b) = wx, + dL(W b
" " D) = 15 O — Wity + D))
d0L(w,b)
WE=EwW-—a——
o dL(w,b)
— b=b—a«a 0
P
o'.q °
X
A7
l-.._

No bias a = 0.5 Biasa = 0.5



Binary Classification

* We would like to differentiate between 2 classes
* Dog/cat
* Disease/no disease
* Pedestrian/no pedestrian

* We are given an input vector x and want to predict y
* Suppose we compute a value, w} x, for class 0 and w! x for class 1

* One way to make decisions

* If wlx >w)x then label this as class 1
e Otherwise, label as class O



Binary Classification

 However, what if we are interested in probabilistic decisions?
* P(y = 1|x)
*Py=0[x)=1-P(y =1|x)

* If values are guaranteed to be positive and have a sum greater than zero, then
we can obtain a probability by dividing each value by their sum

* Ensures normalized values are positive and sum to 1 (obeys the laws of probability)

 We can do this by exponentiating the values w’ x
T 1
eW1¥ 1 1

* P(y =1|x) = — T. — — T

eWixiewox  1+eWow'x  14e-wix

* This gives us the logistic function
1

1+e~@ 0
-10 10

e g(a) =



Derivative of Logistic Function

d 0
. aﬂQo_Ehﬁ—x a@Xl—a&D cﬂ@a(x)
1 1+e™* 1 e~ 1 1
*1- a(x) =1- 1+e~X ~ 14e~% - 1+e~X  1+e~X e_Lx+1 T eX41
* Using
0 1
7w = " rora @
. d(xc)
dx
, 9
dx €
° @ — O
0x
. 0100 +f2(x) _ 0fi(®) afz(x)
0x 0x 0x
o 1 1 —x 1 d 1 d  _y
dx 1+e~* (1+e"c)2 0x (1 te ) T (1+e™%)2 9x 1 (1+e=%)2 9x €

= (1;‘_’;)2 =1 — = g(x)(1 - o(x))

(1+e—%) (1+e‘x)



Likelihood

* Likelihood: the joint probability of the observed data given as a function of
the parameters of a statistical model

* Observed data: ((x1,¥1), (X2,¥2),--(Xn, YN))
 Parameters: w

o 1= [Iis1 Pilxs; w)
* P(yilx;;w)ify, =1
1

14+e~w'x

* P(yilxi;w) ify; =0
1
e 1 — -

1+e™W X




Maximum Likelihood

* We would like to find w that maximizes the likelihood

* 1 =[5 Pl w)

* For numerical stability, we take the log of the likelihood

« Il =YY  log P(y;|x;; w)

+ =20 1y110gP(yl = 1lx;w) + (1 —y)log(1l = P(y; = 1|x; w))
+ = T yilog(—=m) + (1~ ylog(l — —

s

1+e



Logistic Regression: Gradient Descent

* Because of the non-linearity, we cannot find an analytical solution as we did with linear
regression

* Because we want to maximize the log-likelihood, we perform gradient descent on the
negative log-likelihood

L(W) = —(ZX yilogowTx;) + (1 —yp) log(1 —o(w'x;)))
a—wi (ylogowTx) + (1 — y)log(1 —a(w'x)))

. (J(WTX)U(W x)(l — o(w x)) - — a(wa)a(W x)(l —o(w x))) X;

. y 1=y T _ _

(a(wa) 1- a(wa)) o(w x)(l o(w x))xl
. y(1-o(wlx)) _ o(wlx)(1-y) T _ T _
(a(wa)(l —owTx)) oWwTx)(1- a(wa))) o(w x)(l a(w x))xl

* (y—yow'x) —a(w'x) + yo(w'x))x;
« (y —o(wTx))x;

oL
. av(v“i’) ==Yy —owWTx))x; =X (c(WTx) — y)x;




Logistic Regression: Gradient Descent

* The input is two dimensional

+ P(y = 1]x) = :

1+e—(WoXo+wix1) 15 12.0

* No bias b o 10.5
* We can plot the decision boundary s 2.0
between the positive and negative class e
as when wyxy + w;yxq is 0 I 6.0
P(y=1|x) =05 ~0.5 45
* WoXg + wixq1 =0 1o 3.0

* X1 = _WOxO/Wl 1s 1.5

0.0




Classes Cannot Always be Perfectly Separated

* In many real-world applications, the classes are not perfectly separated
e Data could be inherently noisy
* The predictors may not be informative enough
* The machine learning model may not be expressive enough
* The training algorithm used may not be appropriate

* What could happen if your data contains more of one class than another?
* For example, you want to learn if someone has a rare disease from medical tests

* Since most people do not have the disease, most examples are of people that do not have
the disease



Balanced vs Unbalanced Data

* One should always ensure that they balance their datasets!
* Every gradient step can sample an equal number of states from each class
* Or weight the contributions to the loss for each class to account for data being unbalanced

* |s this enough?

Decision boundary Decision boundary
with balanced data with unbalanced data

1

1 + e—(Wox0+W1xl+b)

P(y =1|x) =
Has bias b




Balanced vs Unbalanced Data

e Even if the classes themselves are balanced, there may be
outliers within those classes

* If these are not explicitly accounted for, the model may Outliers
ignore them entirely

* For example, a rare disease that affects older people much
more than children




Softmax Regression

* If we have more than two classes, we can generalize logistic regression

T
w1x
* We got the logistic function from this equation Te =
ewlx_l_eWOx
RIZE:
* If we have C classes, the probability of class i is =

c wix
Zj:le J



Linear Models: Limitations

* Many interesting problems have a non-linear relationship between the inputs
and outputs

* Linear models cannot handle these cases




